Bioremediation of Textile Dyes Using Native Microorganisms: Sustainable Microbiological Approaches
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl-2.05Keywords:
Bioremediation, Textile dyes, Native microorganisms, Biosorption, Enzymatic degradation, Wastewater treatment, Environmental sustainability, Green technology.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Significant environmental difficulties are posed by the textile industry's heavy reliance on synthetic dyes. Dye pollutants in wastewater are detrimental and long-lasting, which is why they create these issues. Traditional approaches to treating textile effluents are ineffective in decomposing complex color compounds, and they can be prohibitively costly. To further the area of bioremediation as an ecologically and financially responsible option, this research investigates the possibility of naturally occurring microbes degrading and cleaning textile dyes. The ability of native fungi, bacteria, and algae to degrade various color chemicals through enzymes has demonstrated promise in their isolation from polluted settings. This study delves into the ways these microbes manage to repair hues. Oxidative pathways, biosorption, and enzymatic degradation are all thoroughly described. In addition, we look at the scalability and practicability of microbiological approaches in bioreactors, specifically looking at how these techniques may be used to treat industrial wastewater. Green technology, which seeks to lessen industrial waste and safeguard the environment, is a rapidly expanding field, and the results contribute to it.Abstract
How to Cite
Downloads
Similar Articles
- Prince Williams, Nilesh M. Patil, Allanki S. Rao, Chandra M. V. S. Akana, K. Soujanya, Aakansha M. Steele, Transformative effects of connectivity technologies on urban infrastructure and services in smart cities , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Ishwar Dan, Viksit Bharat @2047: A vision for India’s sustainable development , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- L Brigith Gladys, J Merline Vinotha, Multi-objective Multi-route Soft Rough Sustainable Transportation Problem based on Various Road Maintenance Conditions , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- Brigith Gladys L, Merline Vinotha J, Sustainable fuzzy rough multi-objective multi-route cold transportation model with traffic flow and route constraints , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- RENA MEHTA, ECO DESIGN IN TEXTILE AND CLOTHING , The Scientific Temper: Vol. 2 No. 1&2 (2011): The Scientific Temper
- S. K. Mishra, BIOREMEDIATION: A BIOTECHNOLOGICAL APPROACH TOWARD ENVIRONMENTAL MANAGEMENT , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- Iftikhar A. Tayubi, Mayur D. Jakhete, Spoorthi B. Shetty, Ashish Verma, Mohit Tiwari, S. Kiruba, Sustainable healthcare AI-enhanced materials discovery and design for eco-friendly and biocompatible medical applications , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- S. Kumar, M. Santhanalakshmi , R. Navaneethakrishnan, Content addressable memory for energy efficient computing applications , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- B. Kalpana, P. Krishnamoorthy, S. Kanageswari, Anitha J. Albert, Machine learning approaches for predicting species interactions in dynamic ecosystems , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- M. Menaha, J. Lavanya, Crop yield prediction in diverse environmental conditions using ensemble learning , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 7 8 9 10 11 12 13 14 15 16 > >>
You may also start an advanced similarity search for this article.

