Applying the risk-need-responsivity model in juvenile offender treatment: A conceptual framework
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl-2.04Keywords:
Juvenile delinquency, Offender treatment, The RNR model, Juvenile justice system.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Juvenile crime in India is a pressing issue that requires tailored rehabilitation approaches. This paper explores the application of the "Risk-Need-Responsivity (RNR) model" as a conceptual model for treating juvenile offenders within the Indian legal context. The study reviews correctional practices and highlights the need for structured offender treatment based on the 'RNR model's' core principles of 'risk,' 'need,' and 'responsivity.' Drawing on criminological theories and empirical evidence, the paper emphasizes the significance of addressing criminogenic factors to reduce recidivism. By analyzing existing literature on juvenile justice, the paper demonstrates how the RNR model, typically employed in Western contexts, can be adapted for India's socio-cultural environment to enhance the effectiveness of juvenile rehabilitation. The findings suggest that integrating RNR-informed interventions into the juvenile justice system can improve long-term rehabilitation outcomes and reduce re-offense rates among young offenders.Abstract
How to Cite
Downloads
Similar Articles
- S. Mohamed Iliyas, M. Mohamed Surputheen, A.R. Mohamed Shanavas, Enhanced Block Chain Financial Transaction Security Using Chain Link Smart Agreement based Secure Elliptic Curve Cryptography , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- Roop Kanwal, Children’s literature as a tool for social change: Teaching values and social awareness , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- A. Anand, A. Nisha Jebaseeli, AI-driven real-time performance optimization and comparison of virtual machines and containers in cloud environments , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- S Selvakumari, M Durairaj, Performance Analysis of Deep Learning Optimizers for Arrhythmia Classification using PTB-XL ECG Dataset: Emphasis on Adam Optimizer , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Renuka Thapliyal, Can Shimla be fitted into the compact city model? , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- V. Infine Sinduja, P. Joesph Charles, A hybrid approach using attention bidirectional gated recurrent unit and weight-adaptive sparrow search optimization for cloud load balancing , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- M. Iniyan, A. Banumathi, The WBANs: Steps towards a comprehensive analysis of wireless body area networks , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Modenisha U, Ritha W, A mathematical model for sustainable landfill allocation and waste management , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- V Babydeepa, K. Sindhu, A hybrid feature selection and generative adversarial network for lung and uterus cancer prediction with big data , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Shiny Bridgette I, Rexlin Jeyakumari S, An optimal fuzzy inventory model for rice farming using lagrangean method , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 12 13 14 15 16 17 18 19 20 21 > >>
You may also start an advanced similarity search for this article.

