Immersive learning: A virtual reality teaching model for enhancing english speaking skills
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl-2.22Keywords:
Virtual reality, English speaking skills, Immersive learning, Interactive environments, Educational technology.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Speaking abilities are an essential component of communicating effectively and expressing oneself personally. They are significant in various contexts, such as social, professional, and intellectual. In addition to establishing stronger interpersonal relationships, improving confidence, and contributing to success in collaborative contexts, proficient in speaking can present their views clearly and concisely, participate in meaningful conversations, and convince others. It is necessary to have good speaking abilities to communicate effectively across cultural boundaries and develop one’s profession in today’s globalized society. An innovative virtual reality (VR) teaching paradigm is presented in this study to enhance the English-speaking abilities of students who are enrolled in professional programs. This virtual reality (VR) model mimics actual communication settings by immersing students in realistic and engaging worlds. This model also allows students to engage in active practice, receive quick feedback, and feel emotionally engaged. This paradigm emphasizes individualized, context-based conversation practice to enhance fluency, pronunciation, and self-assurance in speaking languages.Abstract
How to Cite
Downloads
Similar Articles
- N. Saranya, M. Kalpana Devi, A. Mythili, Summia P. H, Data science and machine learning methods for detecting credit card fraud , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- N Sasirekha, Jayakumar Karuppaiah, Yuvaraja Thangavel, KG Parthiban , Classification of mammograms by breast density , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- S. Udhaya Priya, M. Parveen, ETPPDMRL: A novel approach for prescriptive analytics of customer reviews via enhanced text parsing and reinforcement learning , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Harshaben Raghubhai Pankuta, Kusum R. Yadav, Assessing students’ perception of the academic features of the Gyankunj Project , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Mohiyuddeen Hafzal, Gayathri B.J., M. Meghana Shet, Shaping the future: Education and skill development for Viksit Bharat@2047 , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Gitesh Kalita, NEP 2020 policies for inclusive education , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Surbhi Choudhary, Vinay Chauhan, Exploring the metaverse: A new era for hospitality , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper
- Ganga Gudi, Mallamma V Reddy, Hanumanthappa M, Enhancing Kannada text-to-speech and braille conversion with deep learning for the visually impaired , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Naveena Somasundaram, Vigneshkumar M, Sanjay R. Pawar, M. Amutha, Balu S, Priya V, AI-driven material design for tissue engineering a comprehensive approach integrating generative adversarial networks and high-throughput experimentation , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Jayshree Mehta, Pranjal Bhatt, Vikas Raval, Skill development in India: Challenges, current, and future perspectives , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

