Immersive learning: A virtual reality teaching model for enhancing english speaking skills
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl-2.22Keywords:
Virtual reality, English speaking skills, Immersive learning, Interactive environments, Educational technology.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Speaking abilities are an essential component of communicating effectively and expressing oneself personally. They are significant in various contexts, such as social, professional, and intellectual. In addition to establishing stronger interpersonal relationships, improving confidence, and contributing to success in collaborative contexts, proficient in speaking can present their views clearly and concisely, participate in meaningful conversations, and convince others. It is necessary to have good speaking abilities to communicate effectively across cultural boundaries and develop one’s profession in today’s globalized society. An innovative virtual reality (VR) teaching paradigm is presented in this study to enhance the English-speaking abilities of students who are enrolled in professional programs. This virtual reality (VR) model mimics actual communication settings by immersing students in realistic and engaging worlds. This model also allows students to engage in active practice, receive quick feedback, and feel emotionally engaged. This paradigm emphasizes individualized, context-based conversation practice to enhance fluency, pronunciation, and self-assurance in speaking languages.Abstract
How to Cite
Downloads
Similar Articles
- Murugaraju P, A. Edward William Benjamin, Efficacy of multimedia courseware in achievement in Mathematics , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- Lakshmi Priya, Anil Vasoya, C. Boopathi, Muthukumar Marappan, Evaluating dynamics, security, and performance metrics for smart manufacturing , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Muruganantham P, Harshavardhan J, Rajesh PK , Neelakrishnan S, Implementation of flexible and customizable free-from mirror heads-up display , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Yasodha V, V. Sinthu Janita, AI-driven IoT routing: A hybrid deep reinforcement learning and shrike optimization framework for energy-efficient communication , The Scientific Temper: Vol. 16 No. 08 (2025): The Scientific Temper
- Deepika S, Jaisankar N, A novel approach to heart disease classification using echocardiogram videos with transfer learning architecture and MVCNN integration , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- C. Mohan Raj, M. Sundaram , M. Anand, Automation of industrial machinerie , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Pankaj Kumar, Ambrish Pandey, Rajendrakumar Anayath, Comparative study of print quality attributes on bio-based biodegradable plastic using flexography and gravure printing process , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- D. Jayadurga, A. Chandrabose, Expanding the quantity of virtual machines utilized within an open-source cloud infrastructure , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- R. Selvakumar, A. Manimaran, Janani G, K.R. Shanthy, Design and development of artificial intelligence assisted railway gate controlling system using internet of things , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- K. Vani, S. Sujatha, Fault tolerance systems in open source cloud computing environments–A systematic review , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.

