Immersive learning: A virtual reality teaching model for enhancing english speaking skills
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl-2.22Keywords:
Virtual reality, English speaking skills, Immersive learning, Interactive environments, Educational technology.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Speaking abilities are an essential component of communicating effectively and expressing oneself personally. They are significant in various contexts, such as social, professional, and intellectual. In addition to establishing stronger interpersonal relationships, improving confidence, and contributing to success in collaborative contexts, proficient in speaking can present their views clearly and concisely, participate in meaningful conversations, and convince others. It is necessary to have good speaking abilities to communicate effectively across cultural boundaries and develop one’s profession in today’s globalized society. An innovative virtual reality (VR) teaching paradigm is presented in this study to enhance the English-speaking abilities of students who are enrolled in professional programs. This virtual reality (VR) model mimics actual communication settings by immersing students in realistic and engaging worlds. This model also allows students to engage in active practice, receive quick feedback, and feel emotionally engaged. This paradigm emphasizes individualized, context-based conversation practice to enhance fluency, pronunciation, and self-assurance in speaking languages.Abstract
How to Cite
Downloads
Similar Articles
- S. Joshitha, A. Yakshitha, Mariyam Adnan, Diversification and application of Warli art on apparels , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Finney D. Shadrach, Harsshini S, Darshini R, Grapevine leaf species and disease detection using DNN , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- M. Yamunadevi, P. Ponmuthuramalingam, A review and analysis of deep learning methods for stock market prediction with variety of indicators , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- I.Bhuvaneshwarri, M. N. Sudha, An implementation of secure storage using blockchain technology on cloud environment , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- C. Premila Rosy, Clustering of cancer text documents in the medical field using machine learning heuristics , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- P. Pattunnarajam, Janani G, A. Vijayaraj, Sathiya Priya S, Enhanced routing strategy of wireless sensor network based on fifth generation communication technology , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Kshema Manu, Malathi S, A Comprehensive Study on Addressing Trust Erosion in Multimedia in The Indian Context , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- O. Devipriya, K. Kungumaraj, Enhancing cloud efficiency: an intelligent virtual machine selection and migration approach for VM consolidation , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- N. Sasirekha, R. Anitha, Vanathi T, Umarani Balakrishnan, Automatic liver tumor segmentation from CT images using random forest algorithm , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Kanthalakshmi S, Nikitha M. S, Pradeepa G, Classification of weld defects using machine vision using convolutional neural network , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
<< < 15 16 17 18 19 20 21 22 23 24 > >>
You may also start an advanced similarity search for this article.

