Chaotic-based optimization, based feature selection with shallow neural network technique for effective identification of intrusion detection
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.24Keywords:
Chaotic optimization, Feature selection, Shallow neural networks, Intrusion detection, cybersecurity.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The work in this paper attempts to deal with intrusion detection using a chaotic-based optimization technique and feature selection + shallow neural networks. The idea of chaotic systems is used to get randomness in the feature selection process, which can enable a shallow neural network to perform better for intrusion detection. Experiments on benchmark datasets reveal the effectiveness of this proposed solution by significant improvements in detection accuracy, false positive reduction at run-time and computational efficiency as compared to conventional methods.Abstract
How to Cite
Downloads
Similar Articles
- Sachin V. Chaudhari, Jayamangala Sristi, R. Gopal, M. Amutha, V. Akshaya, Vijayalakshmi P, Optimizing biocompatible materials for personalized medical implants using reinforcement learning and Bayesian strategies , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Swetadri Samadder, Analyzing the impact of COVID-19 on global stock markets: An international comparative analysis , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- S. Nagarani, Amalraj P., Lakshay Phor, Nishank S. Pimple, Banashree Sen, Ramaprasad Maiti, Vikas S. Jadhav, Innovative technological advancements in solving real quadratic equations: Pioneering the frontier of mathematical innovation , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Urmi Chakravorty, Social media’s detrimental outcomes on personal relationships , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Priya Rani, Sonia, Garima Dalal, Pooja Vyas, Pooja, Mapping electric vehicle adoption paradigms: A thematic evolution post sustainable development goals implementation , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Manikant Tripathi, Sukriti Pathak, Ranjan Singh, Pankaj Singh, Pradeep K. Singh, Nivedita Prasad, Sadanand Maurya, Awadhesh Kumar Shukla, Adsorptive remediation of hexavalent chromium using agro-waste rice husk: Optimization of process parameters and functional groups characterization using FTIR analysis , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- G. Deena, K. Raja, M. Azhagiri, W.A. Breen, S. Prema, Application of support vector classifier for mango leaf disease classification , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Pritee Rajaram Ray, Bijal Zaveri, Inclusive education for children with learning difficulties in Mauritius: An analytical study among select stakeholders , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Manikannan Palanivel, Alaudeen A, Pandiyan K. S, Sivaprakasam P, Hybrid fuzzy and fire fly algorithm-based MPPT controller for PV system using super lift boost converter , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- S. C. Prabha, P. Sivaraaj, S. Kantha Lakshmi, Data analysis and machine learning-based modeling for real-time production , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 13 14 15 16 17 18 19 20 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- S. Hemalatha, N. Vanjulavalli, K. Sujith, R. Surendiran, Effective gorilla troops optimization-based hierarchical clustering with HOP field neural network for intrusion detection , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- V. Seethala Devi, N. Vanjulavalli, K. Sujith, R. Surendiran, A metaheuristic optimisation algorithm-based optimal feature subset strategy that enhances the machine learning algorithm’s classifier performance , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper