Trust aware clustering approach for the detection of malicious nodes in the WSN
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.21Keywords:
Wireless sensor networks, Clustering approach, Low-energy adaptive clustering hierarchy, Malicious node detection.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Wireless sensor networks (WSNs) are pivotal in a range of applications such as environmental monitoring, healthcare, and defense. However, their decentralized and resource-constrained nature makes them vulnerable to various security threats, particularly from malicious nodes that can disrupt the network’s functionality. To address this issue, this paper proposes a novel trust aware clustering (LEACH) approach integrated with an optimization-based technique for the detection of malicious nodes in WSNs. The proposed model leverages the low-energy adaptive clustering hierarchy (LEACH) protocol for efficient clustering and energy management while incorporating a trust-based mechanism to evaluate the behavior of nodes. Additionally, an optimization algorithm is employed to enhance the accuracy of malicious node detection and improve the overall network performance. The trust model dynamically updates based on node interactions, ensuring that compromised nodes are detected and isolated promptly. Simulation results demonstrate the efficacy of the proposed approach in terms of increased detection accuracy, reduced energy consumption, and prolonged network lifetime, making it a robust solution for securing WSNs against malicious attacks.Abstract
How to Cite
Downloads
Similar Articles
- Priya Rani, Sonia, Garima Dalal, Pooja Vyas, Pooja, Mapping electric vehicle adoption paradigms: A thematic evolution post sustainable development goals implementation , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Ayesha Shakith, L. Arockiam, EMSMOTE: Ensemble multiclass synthetic minority oversampling technique to improve accuracy of multilingual sentiment analysis on imbalance data , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Theophilus Deenadayal, Tarun Jain, Floristic composition in Paramananda Devara Gudda A sacred grove at Lingadahalli Village Devadurga Taluk Raichur District Karnataka, India , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Royan Chhetri, Prem Kumar N, Polyphenolic compounds as novel reno-modulatory agents in the management of diabetic nephropathy in Wistar rats , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- A. Tamilmani, K. Muthuramalingam, An enhanced support vector machine bbased multiclass classification method for crop prediction , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- N. Sasirekha, R. Anitha, Vanathi T, Umarani Balakrishnan, Automatic liver tumor segmentation from CT images using random forest algorithm , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Kanthalakshmi S, Nikitha M. S, Pradeepa G, Classification of weld defects using machine vision using convolutional neural network , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Ravindra K. Kushwaha, Sonia Patel, Sarfaraz Ahmad, Indian education through a G20 lens-Ensuring continuity of sustainable development , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Vaishali P. Kuralkar, Prabodh Khampariya, Shashikant M. Bakre, Study and analysis of the stochastic harmonic distortion caused by multiple converters in the power system (micro-grid) , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Nitin Bhone, Nilesh Diwakar, S. S. Chinchanikar, Multi-response optimization for AISI M7 Hard Turning Using the utility concept , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
<< < 15 16 17 18 19 20 21 22 23 24 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Rekha R., P. Meenakshi Sundaram, Enhanced malicious node identification in WSNs with directed acyclic graphs and RC4-based encryption , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- R. Kalaiselvi, P. Meenakshi Sundaram, Machine learning-based ERA model for detecting Sybil attacks on mobile ad hoc networks , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper