Effective gorilla troops optimization-based hierarchical clustering with HOP field neural network for intrusion detection
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.23Keywords:
Intrusion detection, Gorilla troops optimization, Hierarchical clustering, Hopfield neural network, Cybersecurity.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
An intrusion detection system (IDS) armed with signature and attack pattern databases as reference tools are used to protect computer networks from intrusion. This article provides a hybrid machine learning algorithm for gorilla troops optimization (GTO) integrating hierarchical clustering and Hopfield neural network. In this paper, the authors present a model to improve intrusion detection accuracy and contain high operational flexibility of these techniques. It is inspired by social behavior in gorillas and optimizes the clustering process HNN. Experimental results show that the proposed approach enhances the traditional methods in intrusion detection for a variety of intrusions and it presents an effective solution that can help cybersecurity application development better.Abstract
How to Cite
Downloads
Similar Articles
- Deena Merit C K , Haridass M, Analysis of multiple sleeps and N-policy on a M/G/1/K user request queue in 5g networks base station , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- O. Devipriya, K. Kungumaraj, Enhancing cloud efficiency: an intelligent virtual machine selection and migration approach for VM consolidation , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- R. Kalaiselvi, P. Meenakshi Sundaram, Machine learning-based ERA model for detecting Sybil attacks on mobile ad hoc networks , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Gomathi P, Deena Rose D, Sampath Kumar R, Sathya Priya M, Dinesh S, Ramarao M, Computer vision for unmanned aerial vehicles in agriculture: applications, challenges, and opportunities , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Engida Admassu, Classifying enset based on their disease tolerance using deep learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- P. Ananthi, A. Chandrabose, The socio-technical opportunities and threats of crowdsensing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- R. Porselvi, D. Kanchana, Beulah Jackson, L. Vigneash, Dynamic resource management for 6G vehicular networks: CORA-6G offloading and allocation strategies , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Archana Verma, Application of metaverse technologies and artificial intelligence in smart cities , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Abhishek Pandey, V Ramesh, Puneet Mittal, Suruthi, Muniyandy Elangovan, G.Deepa, Exploring advancements in deep learning for natural language processing tasks , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Dhulasi Priya S, Saranya K G, Significance of artificial intelligence in the development of sustainable transportation , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
<< < 5 6 7 8 9 10 11 12 13 14 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- S. Hemalatha, N. Vanjulavalli, K. Sujith, R. Surendiran, Chaotic-based optimization, based feature selection with shallow neural network technique for effective identification of intrusion detection , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- V. Seethala Devi, N. Vanjulavalli, K. Sujith, R. Surendiran, A metaheuristic optimisation algorithm-based optimal feature subset strategy that enhances the machine learning algorithm’s classifier performance , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper