Enhanced otpmization based support vector machine classification approach for the detection of knee arthritis
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.12Keywords:
Knee arthritis detection, Support vector machine, Cuckoo search optimization, Hyperparameter tuning, classification.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The accurate detection of knee arthritis is essential for effective medical diagnosis and treatment. In this study, we propose an enhanced classification approach using a support vector machine (SVM) coupled with Cuckoo search optimization (CSO) to improve the detection of knee arthritis. The classification challenge lies in tuning the hyperparameters of the SVM, specifically the penalty parameter (C) and the kernel function parameter (γ), which significantly influence the model’s performance. Traditional methods of hyperparameter tuning may be computationally expensive and prone to local minima. To address these challenges, we integrate CSO as an optimization algorithm for the efficient search of optimal hyperparameters. Cuckoo search optimization, inspired by the brood parasitism behavior of cuckoo birds, is applied to optimize the SVM hyperparameters by balancing exploration and exploitation during the search process. CSO efficiently explores the hyperparameter space and finds an optimal or near-optimal solution by minimizing the classification error. The hybrid approach aims to enhance the predictive accuracy and generalization ability of the SVM model. The proposed CSO-SVM framework is validated on a benchmark knee arthritis dataset, and the experimental results demonstrate a significant improvement in classification performance compared to traditional SVM and other optimization algorithms. The proposed model’s ability to optimize hyperparameters with CSO shows promise in achieving higher accuracy, precision, recall, and F1 score, making it a robust approach for knee arthritis detection.Abstract
How to Cite
Downloads
Similar Articles
- Temesgen Asfaw, Customer churn prediction using machine-learning techniques in the case of commercial bank of Ethiopia , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Nandini S, Nagabushanam M, Nandeesh G S, Sundaresha M P, Pramodkumar S, Segmentation of Brain Tumor from Magnetic Resonance Imaging using Handcrafted Features with BOA-based Transformer , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- Mansi Harjivan Chauhan, Divyang D. Vyas, Advancements in sentiment analysis – A comprehensive review of recent techniques and challenges , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Nithya R, Kokilavani T, Joseph Charles P, Multi-objective nature inspired hybrid optimization algorithm to improve prediction accuracy on imbalance medical datasets , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Merlin Sofia S, D. Ravindran, G. Arockia Sahaya Sheela, Clean Balance-Ensemble CHD: A Balanced Ensemble Learning Framework for Accurate Coronary Heart Disease Prediction , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
- S. Udhaya Priya, M. Parveen, ETPPDMRL: A novel approach for prescriptive analytics of customer reviews via enhanced text parsing and reinforcement learning , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Shobhit Shukla, Suman Mishra, Gaurav Goel, River flow modeling for flood prediction using machine learning techniques in Godavari river, India , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Temesgen A. Asfaw, Deep learning hyperparameter’s impact on potato disease detection , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- S. C. Prabha, P. Sivaraaj, S. Kantha Lakshmi, Data analysis and machine learning-based modeling for real-time production , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- V. Manikandabalaji, R. Sivakumar, V. Maniraj, A novel approach using type-II fuzzy differential evolution is proposed for identifying and diagnosis of diabetes using semantic ontology , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 4 5 6 7 8 9 10 11 12 13 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- T. Ramyaveni, V. Maniraj, Hyperparameter tuning of diabetes prediction using machine learning algorithm with pelican optimization algorithm , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- V. Manikandabalaji, R. Sivakumar, V. Maniraj, A framework for diabetes diagnosis based on type-2 fuzzy semantic ontology approach , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- V. Manikandabalaji, R. Sivakumar, V. Maniraj, A novel approach using type-II fuzzy differential evolution is proposed for identifying and diagnosis of diabetes using semantic ontology , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper

