Energy efficient routing with cluster approach in wireless networks – A literature review
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.35Keywords:
Wireless networks, Clustering approach, Efficient routing, Malicious attacks, energy efficientDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This literature review examines the cluster-based approaches in wireless networks, focusing on their effectiveness in conserving energy, enhancing routing efficiency, and improving network credibility. Wireless networks are increasingly employed in various applications, from internet of things (IoT) systems to mobile ad hoc networks, where energy efficiency is critical due to the limited battery life of devices. Cluster-based techniques group nodes into clusters to optimize resource utilization, facilitating energy conservation by enabling localized communication and reducing redundant transmissions. The review explores various clustering algorithms, such as low-energy adaptive clustering hierarchy (LEACH) and hybrid energy-efficient distributed clustering (HEED), highlighting their impact on network longevity and scalability. Additionally, the study addresses the challenges of maintaining robust routing protocols within clustered networks, emphasizing the importance of reliable data transmission and node credibility to mitigate risks from malicious attacks. By synthesizing current research findings, this review provides insights into the future directions of cluster-based strategies in wireless networks, suggesting potential enhancements to ensure efficient energy management and reliable network performance.Abstract
How to Cite
Downloads
Similar Articles
- Shiny Bridgette I, Rexlin Jeyakumari S, Fuzzy inventory model with warehouse limits and carbon emission , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Nithya R, Kokilavani T, Joseph Charles P, Multi-objective nature inspired hybrid optimization algorithm to improve prediction accuracy on imbalance medical datasets , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- A. Sathya, M. S. Mythili, MOHCOA: Multi-objective hermit crab optimization algorithm for feature selection in sentiment analysis of Covid-19 Twitter datasets , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Raghvendra, Tulika Saxena, Saurabh Verma, Rashi Saxena, Smita Dron, Shilpi Singh, Combination of financial literacy, strategic marketing and effective human resource for sustainable household wealth development , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Aruljothi Rajasekaran, Jemima Priyadarsini R., ECDS: Enhanced Cloud Data Security Technique to Protect Data Being Stored in Cloud Infrastructure , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Kumari Sammy, Sumita Singh, Coefficient of absorption cross-section of RN black holes , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- T. Malathi, T. Dheepak, Enhanced regression method for weather forecasting , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- S. Vanaja, Hari Ganesh S, Application of data mining and machine learning approaches in the prediction of heart disease – A literature survey , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Ayesha Shakith, L. Arockiam, EMSMOTE: Ensemble multiclass synthetic minority oversampling technique to improve accuracy of multilingual sentiment analysis on imbalance data , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- P. Ananthi, A. Chandrabose, The socio-technical opportunities and threats of crowdsensing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 26 27 28 29 30 31 32 33 34 35 > >>
You may also start an advanced similarity search for this article.

