Exploring learning-assisted optimization for mobile crowd sensing
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.33Keywords:
Mobile crow sensing, Machine learning, Deep learning, Learning optimization methods, Reinforcement learning.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Introducing sensing mobile crowds (SMC), a novel paradigm for real-time location-dependent urban sensing data collection. It is critically important to optimize the SMC process such that it provides the highest sensing quality at the lowest feasible cost due to its practical use. As an alternative to the combinatorial optimization algorithms utilized in previous research, a new approach to SMC optimization is to apply learning approaches to extract knowledge, such as patterns in participants’ behavior or correlations in sensing data. In this work, we thoroughly research learning-assisted optimization approaches for SMC. Using the existing literature as a starting point, we will describe various learning and optimization methods and evaluate them from the perspectives of the task and the participant. How to combine different approaches to get a complete solution is also discussed. Lastly, we point out the limitations that exist at the moment, which might lead to research directions in the future.Abstract
How to Cite
Downloads
Similar Articles
- J. Helan Shali Margret, N. Amsaveni, A study on recency patterns of cited resources in the cytokine publications from web of science , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Panda Aditi Ambarish, Kaushik Trivedi, Immersive learning: A virtual reality teaching model for enhancing english speaking skills , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Nitin Bhone, Nilesh Diwakar, S. S. Chinchanikar, Multi-response optimization for AISI M7 Hard Turning Using the utility concept , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Jyoti Kataria, Himanshi Rawat, Himani Tomar, Naveen Gaurav, Arun Kumar, Azo Dyes Degradation Approaches and Challenges: An Overview , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Ravi Kumar P, C. Gowri Shankar, Optimizing power converters for enhanced electric vehicle propulsion: A novel research methodology , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Alok Sharma, Roumi Deb, Sanjay Kumar Manjul , Cultural continuity and change through ceramic ethnoarchaeology: A comparative analysis of Rang Mahal and contemporary pottery in Nohar, Hanumangarh district, Rajasthan , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Radha K. Jana, Dharmpal Singh, Saikat Maity, Modified firefly algorithm and different approaches for sentiment analysis , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Vijay Kumar, Priya Thapliyal, Rajesh Rayal, Baljeet Singh Saharan, Arun Kumar, Shweta Sahni, The Molecular Profiling and HCV RNA Quantification to Study the Distribution of Different HCV Genotypes in Accordance to Geographical Condition , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- S. Bhuvaneswari, A. Nisha Jebaseeli, Multi-model telecom churn prediction , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Anjum Parvez, Seema Yadav, Sandhya Verma, Electronic Record as Evidence in the Courts: An Analysis , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
<< < 12 13 14 15 16 17 18 19 20 21 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- M. Prabhu, A. Chandrabose, Optimization based energy aware scheduling in wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- M. Jayakandan, A. Chandrabose, An ensemble-based approach for sentiment analysis of covid-19 Twitter data using machine learning and deep learning techniques , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- P. Ananthi, A. Chandrabose, The socio-technical opportunities and threats of crowdsensing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- M. Prabhu, A. Chandrabose, Improving the resource allocation with enhanced learning in wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- A. Kalaiselvi, A. Chandrabose, Fuzzy logic-driven scheduling for cloud computing operations: a dynamic and adaptive approach , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- D. Jayadurga, A. Chandrabose, Distribution of virtual machines with SVM-FFDM approach in cloud computing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- D. Jayadurga, A. Chandrabose, Expanding the quantity of virtual machines utilized within an open-source cloud infrastructure , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper