Exploring learning-assisted optimization for mobile crowd sensing
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.33Keywords:
Mobile crow sensing, Machine learning, Deep learning, Learning optimization methods, Reinforcement learning.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Introducing sensing mobile crowds (SMC), a novel paradigm for real-time location-dependent urban sensing data collection. It is critically important to optimize the SMC process such that it provides the highest sensing quality at the lowest feasible cost due to its practical use. As an alternative to the combinatorial optimization algorithms utilized in previous research, a new approach to SMC optimization is to apply learning approaches to extract knowledge, such as patterns in participants’ behavior or correlations in sensing data. In this work, we thoroughly research learning-assisted optimization approaches for SMC. Using the existing literature as a starting point, we will describe various learning and optimization methods and evaluate them from the perspectives of the task and the participant. How to combine different approaches to get a complete solution is also discussed. Lastly, we point out the limitations that exist at the moment, which might lead to research directions in the future.Abstract
How to Cite
Downloads
Similar Articles
- Brijesh Singh, Ajay Massand, Determinants of Gen Z’s adoption of chatbots in online shopping: An empirical investigation , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Reena Lawrence, Reena Lawrence, Kapil Lawrence, A NEW GLYCOSIDE FROM THE BUDS OF CLOVE GROWN IN NORTH INDIAN PLAINS , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- Anilkumar K. Varsat, Sociolinguistics competence development in the ESL classroom: Challenges and opportunities , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Shaik Rubeena Yasmin, Yashodhara Verma, Reena Lawrence, Biowaste-derived Nanoparticles and Their Preparation: A Review , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Roopshree Banchode, Sai Pranathi Bhallamudi, S. P. Kanchana, Evaluation of the Quality of Commonly Used Edible Oils and The Effects of Frying , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- B Supraja, B Ramachandra, N Venkatasubba Naidu, Analytical Method Development and Validation Analysis for Quantitative Assessment of Thifluzamide by HPLC Procedure , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
- Alok Malviya, Multiple Utilities of Mushrooms , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Mohiyuddeen Hafzal, Gayathri B.J., M. Meghana Shet, Shaping the future: Education and skill development for Viksit Bharat@2047 , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Indrani Sengupta, Merilyn Gomes, Unveiling the divide: Analyzing critical thinking skills in literature and commerce students , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Harshaben Raghubhai Pankuta, Kusum R. Yadav, Evaluating the effectiveness of the Gyankunj Project: Teachers’ perceptions from Gujarat , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
<< < 13 14 15 16 17 18 19 20 21 22 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- M. Prabhu, A. Chandrabose, Optimization based energy aware scheduling in wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- M. Jayakandan, A. Chandrabose, An ensemble-based approach for sentiment analysis of covid-19 Twitter data using machine learning and deep learning techniques , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- P. Ananthi, A. Chandrabose, The socio-technical opportunities and threats of crowdsensing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- M. Prabhu, A. Chandrabose, Improving the resource allocation with enhanced learning in wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- A. Kalaiselvi, A. Chandrabose, Fuzzy logic-driven scheduling for cloud computing operations: a dynamic and adaptive approach , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- D. Jayadurga, A. Chandrabose, Distribution of virtual machines with SVM-FFDM approach in cloud computing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- D. Jayadurga, A. Chandrabose, Expanding the quantity of virtual machines utilized within an open-source cloud infrastructure , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper