AI-driven real-time performance optimization and comparison of virtual machines and containers in cloud environments
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.02Keywords:
AI-driven resource management, Virtual machines, Containers, Cloud computing, Performance optimization, Reinforcement learning.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The accurate calculation and comparison of performance in cloud environments are critical for optimizing resource utilization, particularly with the increasing use of virtual machines (VMs) and containers. This research proposes an AI-driven resource management framework that surpasses traditional machine learning algorithms by enabling real-time, autonomous performance optimization. While machine learning models provide predictive capabilities, they often require manual tuning and retraining for changing workloads. In contrast, the proposed AI-driven system, utilizing techniques such as reinforcement learning and adaptive optimization, continuously adjusts resource allocation based on real-time performance metrics like response time, throughput, and server utilization. This dynamic, self-improving system can respond to fluctuating workloads and network conditions without the need for constant retraining, offering superior flexibility and faster response times. The framework will be validated through extensive experiments across multi-cloud and edge computing environments, demonstrating its ability to significantly reduce calculation time while improving scalability and efficiency. Additionally, this approach incorporates enhanced security mechanisms, combining the isolation benefits of VMs with the lightweight efficiency of containers, providing a comprehensive, real-time solution for cloud-native applications.Abstract
How to Cite
Downloads
Similar Articles
- Vijai Pillarsetti, K. Madhava Rao, The craft of portfolio construction in estate planning: A comprehensive review on equity and mutual fund strategies, and its risks , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Mufeeda V. K., R. Suganya, Novel deep learning assisted plant leaf classification system using optimized threshold-based CNN , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Shailyba Baldevsinh Vala, Manoj Sharma, Analyzing leadership practices among NGOs in Gujarat: A study , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Urmi Chakravorty, Social media’s detrimental outcomes on personal relationships , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Kapil ahuja, Ekta Rani, Soniya Devi, Exploring the dynamic landscape of environmental, social, and governance literature by using bibliometric analysis , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Shaik Abdulla P., Abdul Razak T., Retrieval-Based Inception V3-Net Algorithm and Invariant Data Classification using Enhanced Deep Belief Networks for Content-Based Image Retrieval , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- R Prabhu, S Sathya, P Umaeswari, K Saranya, Lung cancer disease identification using hybrid models , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Selva Kumar D, Revisiting the challenges of disinvestment practices and central public sector enterprises (CPSEs): Indian empirical evidence , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Remya Raj B., R. Suganya, A novel and an effective intrusion detection system using machine learning techniques , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- R.R. Jenifer, V.S.J. Prakash, Detecting denial of sleep attacks by analysis of wireless sensor networks and the Internet of Things , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
<< < 12 13 14 15 16 17 18 19 20 21 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- A. Anand, A. Nisha Jebaseeli, A comparative analysis of virtual machines and containers using queuing models , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- S. Bhuvaneswari, A. Nisha Jebaseeli, Multi-model telecom churn prediction , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper