Energy-efficient location-based routing protocol for wireless sensor networks using teaching-learning soccer league optimization (TLSLO)
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.spl.05Keywords:
Wireless sensor networks, Energy efficiency, Modified K-means clustering, Teaching-learning soccer league optimization, Recurrent artificial neural network.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Energy efficiency in wireless sensor networks (WSNs) is a crucial and fundamental design consideration. These networks typically consist of numerous small, resource-constrained sensor nodes, frequently placed in isolated or difficult-to-reach areas. This research presents a comprehensive methodology for improving the performance and energy efficiency of WSNs deployed in a designated target area. The research begins with the deployment of sensor nodes equipped with location information and the initialization of critical network parameters. Novel techniques are introduced for efficient node clustering using a Haversine-based K-means Clustering algorithm (HKMC) and an advanced hybrid optimization model, teaching-learning soccer league optimization (TLSLO), for optimal cluster head selection within clusters. Data aggregation at cluster heads is crucial for conserving energy, and data compression techniques, including the novel weighted discrete wavelet transform (WDWT)), are employed to reduce data transmission size. Furthermore, deep learning models in the form of recurrent artificial neural networks (RANN) predict energy consumption patterns, enabling the optimization of node sleep-wake schedules for a prolonged network lifetime. Simulated using Python, the proposed protocol’s performance is evaluated, demonstrating its superiority in terms of energy efficiency, latency, network lifetime, and data delivery ratio compared to existing routing protocols. This research offers a holistic approach to improving WSNs enhancing their efficiency and sustainability in resource-constrained environments.Abstract
How to Cite
Downloads
Similar Articles
- Pooja Soni, Vikramaditya Dave, Sujit Kumar, Hemani Paliwal, A comparative study of AI-driven techno-economic analysis for grid-tied solar PV-fuel cell hybrid power systems , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Swetha Rajkumar, Subasree Palanisamy, Online detection and diagnosis of sensor faults for a non-linear system , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Sowmiya M, Banu Rekha B, Malar E, Assessment of transfer learning models for grading of diabetic retinopathy , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Isaac Asampana, Henry M. Akwetey, Ben Ocra, Jones Y. Nyame, Albert A. Akanferi, Hannah A. Tanye, Factors motivating the adoption of virtual learning environments in higher education. Is gender relevant? , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Hashmat Ali, Nishant Soren, Rohit Kumar Ravi, Kunal Kumar, Anjali, Evaluation of Standard Changes in Free Energy During Complexation of p-chlorobenzoylthioacetophenone with Some Bivalent Transition Metals , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- M. Rajalakshmi, V. Sulochana, Enhancing deep learning model performance in air quality classification through probabilistic hyperparameter tuning with tree-structured Parzen estimators , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Adedotun Adedayo F, Odusanya Oluwaseun A, Adesina Olumide S, Adeyiga J. A, Okagbue, Hilary I, Oyewole O, Prediction of automobile insurance fraud claims using machine learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- P. S. Dheepika, V. Umadevi, An optimized approach for detection and mitigation of DDoS attack cloud using an ensembled deep learning approach , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- K. Gokulkannan, M. Parthiban, Jayanthi S, Manoj Kumar T, Cost effective cloud-based data storage scheme with enhanced privacy preserving principles , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- R. P. Singh, R. Chandra, Bikrmaditya ., Effect of Nipping on Growth and Yield of Chickpea (Cicer Aritinum L.) Under Dryland Condition , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
<< < 10 11 12 13 14 15 16 17 18 19 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- A. Tamilmani, K. Muthuramalingam, An enhanced support vector machine bbased multiclass classification method for crop prediction , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Amudavalli L, K. Muthuramalingam, Integrated energy-efficient routing and secure data management for location-aware wireless sensor networks with PFO leveraged improved fuzzy unequal clustering algorithm (IFUC) , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper