Hybridization of bio-inspired algorithms with machine learning models for predicting the risk of type 2 diabetes mellitus
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.42Keywords:
Type 2 diabetes mellitus, Bio-inspired algorithms, Machine learning models.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Type 2 diabetes mellitus is a chronic condition that affects millions of people worldwide. Predicting the risk of developing this disease is critical for early intervention and prevention. Bio-inspired algorithms and machine learning models have shown promising results in predicting the risk of type 2 diabetes mellitus. In this paper, we will explore the use of these two approaches and their hybridization to improve the accuracy of risk prediction. The first section will introduce bio-inspired algorithms and their application in predicting the risk of type 2 diabetes mellitus. We will discuss the advantages of using these algorithms and their limitations. The second section will focus on machine learning models and their potential in predicting the risk of type 2 diabetes mellitus. We will also discuss the limitations of this approach. The final section will compare and contrast the two approaches and explore how their hybridization can overcome their limitations and improve the accuracy of risk prediction. Overall, this paper aims to provide an in-depth analysis of the use of bio-inspired algorithms and machine learning models in predicting the risk of type 2 diabetes mellitus and their hybridization to improve their accuracy.Abstract
How to Cite
Downloads
Similar Articles
- Sowmiya M, Banu Rekha B, Malar E, Assessment of transfer learning models for grading of diabetic retinopathy , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Deepika S, Jaisankar N, A novel approach to heart disease classification using echocardiogram videos with transfer learning architecture and MVCNN integration , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- M. Rajalakshmi, V. Sulochana, Enhancing deep learning model performance in air quality classification through probabilistic hyperparameter tuning with tree-structured Parzen estimators , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- G. Deena, K. Raja, M. Azhagiri, W.A. Breen, S. Prema, Application of support vector classifier for mango leaf disease classification , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Shobhit Shukla, Suman Mishra, Gaurav Goel, River flow modeling for flood prediction using machine learning techniques in Godavari river, India , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- D. Jayadurga, A. Chandrabose, Distribution of virtual machines with SVM-FFDM approach in cloud computing , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- P. S. Dheepika, V. Umadevi, An optimized approach for detection and mitigation of DDoS attack cloud using an ensembled deep learning approach , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Deepa S, Sripriya T, Radhika M, Jeneetha J. J, Experimental evaluation of artificial intelligence assisted heart disease prediction using deep learning principle , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Jhankar Moolchandani, Kulvinder Singh, English language analysis using pattern recognition and machine learning , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Ganga Gudi, Mallamma V Reddy, Hanumanthappa M, Enhancing Kannada text-to-speech and braille conversion with deep learning for the visually impaired , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

