Hybridization of bio-inspired algorithms with machine learning models for predicting the risk of type 2 diabetes mellitus
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.42Keywords:
Type 2 diabetes mellitus, Bio-inspired algorithms, Machine learning models.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Type 2 diabetes mellitus is a chronic condition that affects millions of people worldwide. Predicting the risk of developing this disease is critical for early intervention and prevention. Bio-inspired algorithms and machine learning models have shown promising results in predicting the risk of type 2 diabetes mellitus. In this paper, we will explore the use of these two approaches and their hybridization to improve the accuracy of risk prediction. The first section will introduce bio-inspired algorithms and their application in predicting the risk of type 2 diabetes mellitus. We will discuss the advantages of using these algorithms and their limitations. The second section will focus on machine learning models and their potential in predicting the risk of type 2 diabetes mellitus. We will also discuss the limitations of this approach. The final section will compare and contrast the two approaches and explore how their hybridization can overcome their limitations and improve the accuracy of risk prediction. Overall, this paper aims to provide an in-depth analysis of the use of bio-inspired algorithms and machine learning models in predicting the risk of type 2 diabetes mellitus and their hybridization to improve their accuracy.Abstract
How to Cite
Downloads
Similar Articles
- Olivia C. Gold, Jayasimman Lawrence, Ensemble of CatBoost and neural networks with hybrid feature selection for enhanced heart disease prediction , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- J. Fathima Fouzia, M. Mohamed Surputheen, M. Rajakumar, Hybrid pigeon optimization-based feature selection and modified multi-class semantic segmentation for skin cancer detection (HPO-MMSS) , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Mufeeda V. K., R. Suganya, Novel deep learning assisted plant leaf classification system using optimized threshold-based CNN , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Swetha Rajkumar, Jayaprasanth Devakumar, LSTM based data driven fault detection and isolation in small modular reactors , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Himadri Nalinkumar Raval, Effective strategies in English language teaching: Enhancing writing proficiency among learners , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- L. Vamsi Narasimha Rao, P.S.Prakash, M.Veera Kumari, Improvement of power system operation using a novel hybrid optimization method for optimal allocation of facts devices in radial transmission line , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Komal Raichura, Asha L. Bavarava, Redefining Classroom Dynamics: AI Tools and the Future of English Language Pedagogy , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Suman Kumar Saurabh, Prashant Kumar, Per Recruit Models for Stock Assessment and Management of Carp Fishes in the Pattipul Stream, Sheetalpur, Saran (Bihar) , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Murugaraju P, A. Edward William Benjamin, Efficacy of multimedia courseware in achievement in Mathematics , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- O. Devipriya, K. Kungumaraj, Enhancing cloud efficiency: an intelligent virtual machine selection and migration approach for VM consolidation , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 9 10 11 12 13 14 15 16 17 18 > >>
You may also start an advanced similarity search for this article.

