Hybridization of bio-inspired algorithms with machine learning models for predicting the risk of type 2 diabetes mellitus
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.42Keywords:
Type 2 diabetes mellitus, Bio-inspired algorithms, Machine learning models.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Type 2 diabetes mellitus is a chronic condition that affects millions of people worldwide. Predicting the risk of developing this disease is critical for early intervention and prevention. Bio-inspired algorithms and machine learning models have shown promising results in predicting the risk of type 2 diabetes mellitus. In this paper, we will explore the use of these two approaches and their hybridization to improve the accuracy of risk prediction. The first section will introduce bio-inspired algorithms and their application in predicting the risk of type 2 diabetes mellitus. We will discuss the advantages of using these algorithms and their limitations. The second section will focus on machine learning models and their potential in predicting the risk of type 2 diabetes mellitus. We will also discuss the limitations of this approach. The final section will compare and contrast the two approaches and explore how their hybridization can overcome their limitations and improve the accuracy of risk prediction. Overall, this paper aims to provide an in-depth analysis of the use of bio-inspired algorithms and machine learning models in predicting the risk of type 2 diabetes mellitus and their hybridization to improve their accuracy.Abstract
How to Cite
Downloads
Similar Articles
- Brigith Gladys L, Merline Vinotha J, Sustainable fuzzy rough multi-objective multi-route cold transportation model with traffic flow and route constraints , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- Aarthi Monalisa M, Anli Suresh, Adoptive bancassurance models transforming patronization among the insured , The Scientific Temper: Vol. 16 No. Spl-2 (2025): The Scientific Temper
- Bayelign Abebe Zelalem, Ayalew Ali Abebe, Dividend policy and banks’ performance: Assessing the relevance versus irrelevance theory , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- D. Prabakar, Santhosh Kumar D.R., R.S. Kumar, Chitra M., Somasundaram K., S.D.P. Ragavendiran, Narayan K. Vyas, Task offloading and trajectory control techniques in unmanned aerial vehicles with Internet of Things – An exhaustive review , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- S. Hemalatha, N. Vanjulavalli, K. Sujith, R. Surendiran, Effective gorilla troops optimization-based hierarchical clustering with HOP field neural network for intrusion detection , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- P. Vinnarasi, K. Menaka, Advanced hybrid feature selection techniques for analyzing the relationship between 25-OHD and TSH , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- M. A. Shanti, Optimizing predictive accuracy: A comparative study of feature selection strategies in the healthcare domain , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- S. Sindhu, L. Arockiam, A lightweight selective stacking framework for IoT crop recommendation , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Mansi Harjivan Chauhan, Divyang D. Vyas, Advancements in sentiment analysis – A comprehensive review of recent techniques and challenges , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Swetha Rajkumar, Jayaprasanth Devakumar, LSTM based data driven fault detection and isolation in small modular reactors , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
<< < 8 9 10 11 12 13 14 15 16 17 > >>
You may also start an advanced similarity search for this article.

