A novel and an effective intrusion detection system using machine learning techniques
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.40Keywords:
Intrusion, Security, Supervised, Neighbor, Attack, Rule Mining, Machine Learning.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Network environments become more and more diverse with the presence of many different network protocols, services, applications and so on. With this diversity, many different types of attacks appear and target at a computer or a network every day. A single type of intrusion detection systems (IDSs), which has its own advantages and disadvantages, seems to be insufficient to detect all the attacks. Since us don’t know which types of attacks are coming next, the primary difficulty lays on selecting of the best IDS at a certain time. In our scenario, we assume that each IDS has its own favorite types of attacks to detect. In this paper is investigated for intrusion detection system (IDS) and its performance has been evaluated on the normal and abnormal intrusion datasets (KDDCUP99). New technique of k-NN algorithm using NA (Network Anomaly) rules for intrusion detection system is experimented. The research work compares accuracy, detection rate, false alarm rate and accuracy of other attacks under different proportion of normal information. Comparison between Naive Bayes classifier, SVM and NA-kNN for same training data set and testing data set has carried out. Experimental results show that for Probe, U2R, and R2L, NA-kNN gives better result. Overall correct count to detect correct attacks is larger in NA-kNN than other classifier algorithms.Abstract
How to Cite
Downloads
Similar Articles
- Amita Gupta, A study of the scientific approach inherited in the Indian knowledge system (IKS) , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Naveena Somasundaram, Vigneshkumar M, Sanjay R. Pawar, M. Amutha, Balu S, Priya V, AI-driven material design for tissue engineering a comprehensive approach integrating generative adversarial networks and high-throughput experimentation , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Shaik Chanbasha, N. Jayakumar, N. Bupesh Kumar, A self-regulating optimization algorithm for locating and sizing a local power generation source for a radial structured distribution system in deregulated environment , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Vijaykumar S. Kamble, Prabodh Khampariya, Amol A. Kalage, Application of optimization algorithms in the development of a real-time coordination system for overcurrent relays , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Ravindra K. Kushwaha, Sonia Patel, Sarfaraz Ahmad, Indian education through a G20 lens-Ensuring continuity of sustainable development , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Kanthalakshmi S, Nikitha M. S, Pradeepa G, Classification of weld defects using machine vision using convolutional neural network , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- B. Nivedetha, Water Quality Prediction using AI and ML Algorithms , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Neeru Garg, B.R. Jaipal, Harshvardhan Singh, Impacts of anthropogenic activities on the behavior of Indian fox (Vulpes bengalensis) in the Thar desert , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Virendra Chavda, Bhavesh J. Parmar, Urvi Zalavadia, Assessment of Omni channel retailing characteristics and its effect on consumer buying intention , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Anilkumar K. Varsat, Sociolinguistics competence development in the ESL classroom: Challenges and opportunities , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
<< < 10 11 12 13 14 15 16 17 18 19 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Sruthy M.S, R. Suganya, An efficient key establishment for pervasive healthcare monitoring , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Mufeeda V. K., R. Suganya, Novel deep learning assisted plant leaf classification system using optimized threshold-based CNN , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper