An improved social media behavioral analysis using deep learning techniques
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.38Keywords:
Deep Learning, Behaviour Analysis, ConvNet, Twitter, Positive tweets.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Most online users share their opinions and comments or give their valuable feedbacks on a variety of subjects. Public opinions and comments in social media have had great impact on social and political systems. This vast information can be reviewed and analyzed. As this online information grows in numbers it requires efficient processing. Thus, this information can be mined or analyzed effectively, making it a suitable candidate for data mining. Twitter’s micro blogging service has more than 250 million active users who post short messages about any topic. This vast information is a meaningful source of information regarding different aspects of. This paper proposes to mine and extract information from tweets called IBADL (Improved Behavioral Analysis using Deep Learning), the goal of the proposed technique is to mine information through the study of the tweets posted and conduct an analysis for drawing meaningful conclusions about the behavior of Twitter users.Abstract
How to Cite
Downloads
Similar Articles
- Dushyant Dave, Naresh Vyas, Impact of Textile Effluents on Soil in and Around Pali, Western Rajasthan, India , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
- J. Helan Shali Margret, N. Amsaveni, A study on recency patterns of cited resources in the cytokine publications from web of science , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Remya Raj B., R. Suganya, A novel and an effective intrusion detection system using machine learning techniques , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Nilesh Anute, Geetali Tilak, Revolutionizing e-Learning with AR, VR, And AI , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Duyu Taaza, Sunil S. Jalalpure, Bhaskar Kurangi, In-vitro and in-silico analysis of hesperidin and naringin for metabolic syndrome management , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Sowmiya M, Banu Rekha B, Malar E, Ensemble classifiers with hybrid feature selection approach for diagnosis of coronary artery disease , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Richa Sharma, Shrutimita Mehta, Resilience in Resisting Spaces: Cross-Cultural Gender Identity in “Before We Visit the Goddess” , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Juhi Chaudhary, Dimple Raina, Pallavi Rawat, Vidya Chauhan, Neha Chauhan, GC-MS Profiling and Analysis of Bioprotective Properties of Terminalia chebula against Non-Fermenting Gram-Negative Bacteria Isolated from Tertiary Care Hospital , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
- Radha K. Jana, Dharmpal Singh, Saikat Maity, Modified firefly algorithm and different approaches for sentiment analysis , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Temesgen Asfaw, Customer churn prediction using machine-learning techniques in the case of commercial bank of Ethiopia , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 14 15 16 17 18 19 20 21 22 23 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Muhammed Jouhar K. K., K. Aravinthan, A bigdata analytics method for social media behavioral analysis , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper