An improved social media behavioral analysis using deep learning techniques
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.38Keywords:
Deep Learning, Behaviour Analysis, ConvNet, Twitter, Positive tweets.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Most online users share their opinions and comments or give their valuable feedbacks on a variety of subjects. Public opinions and comments in social media have had great impact on social and political systems. This vast information can be reviewed and analyzed. As this online information grows in numbers it requires efficient processing. Thus, this information can be mined or analyzed effectively, making it a suitable candidate for data mining. Twitter’s micro blogging service has more than 250 million active users who post short messages about any topic. This vast information is a meaningful source of information regarding different aspects of. This paper proposes to mine and extract information from tweets called IBADL (Improved Behavioral Analysis using Deep Learning), the goal of the proposed technique is to mine information through the study of the tweets posted and conduct an analysis for drawing meaningful conclusions about the behavior of Twitter users.Abstract
How to Cite
Downloads
Similar Articles
- Krishna P. Kalyanathaya, Krishna Prasad K, A novel method for developing explainable machine learning framework using feature neutralization technique , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Neeru Garg, B. R. Jaipal, Food Compositions of the Indian Fox (Vulpes bengalensis) in the Desert Region of Rajasthan, India , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- RUCHI SHARMA, YOUGESH KUMAR, STATISTICAL ANALYSIS OF MONOGENEAN POPULATIONS INFESTING FRESH WATER FISH CHANNA PUNCTATUS , The Scientific Temper: Vol. 10 No. 1&2 (2019): The Scientific Temper
- Usmanova S. Bultakovna, Legal regulation of tourism services in the framework of the general agreement on trade in services , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Archana Dhamotharan, Kanthalakshmi Srinivasan, Analog Circuits Based Fault Diagnosis using ANN and SVM , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- B Tharini, R. Rajasudha , A Kannammal, Performance analysis of microstrip patch antenna using binomial series expansion , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- C. Agilan, Lakshna Arun, Optimization-based clustering feature extraction approach for human emotion recognition , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Parul Yadav, Priyanka Suryavanshi, Storage study on compositional analysis of quinoa and ragi based snacks , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Rasheedha A, Santhosh B, Archana N, Sandhiya A, Foot sens - foot pressure monitoring systems , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Krishna P. Kalyanathaya, Krishna Prasad K, A framework for generating explanations of machine learning models in Fintech industry , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
<< < 12 13 14 15 16 17 18 19 20 21 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Muhammed Jouhar K. K., K. Aravinthan, A bigdata analytics method for social media behavioral analysis , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper