Multi-fuzzy set similarity measures using S and T operations
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.14Keywords:
Multi-fuzzy sets, Weighted multi-fuzzy sets, Similarity measure, T- operation, S- operation, Semi-quasi similarity measure.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This paper introduces some similarity measures on multi-fuzzy set, enhancing multi-fuzzy set analysis through a weighting mechanism using S and T operations. Using a fuzzy matrix, we define a weighted relation, summarizing the characteristics of multi-fuzzy set M in relation to a weighted column matrix A. The relation A≤is established by comparing membership grades and weighted elements, expressing similarity or dissimilarity within elements of X.Abstract
How to Cite
Downloads
Similar Articles
- M. Balamurugan, A. Bharathiraja, An enhanced hybrid GCNN-MHA-GRU approach for symptom-to-medicine recommendation by utilizing textual analysis of customer reviews , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- Bhavya S, Prabha Lis Thomas, Effectiveness of Video Assisted Training Program on low back pain and functional disability among housekeeping employees in selected educational institutions in Bengaluru , The Scientific Temper: Vol. 16 No. 12 (2025): The Scientific Temper
- Anita M, Shakila S, Stochastic kernelized discriminant extreme learning machine classifier for big data predictive analytics , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- S. Dhivya, S. Prakash, Power quality assessment in solar-connected smart grids via hybrid attention-residual network for power quality (HARN-PQ) , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- P. Janavarthini, Dr. I. Antonitte Vinoline, Green inventory model for growing items with constraints under demand uncertainty , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- Saarumathi R, Ritha W, Conglomerate Charge and Merchandise Swayed Inventory Model for Fragile Vendibles , The Scientific Temper: Vol. 16 No. 01 (2025): The Scientific Temper
- Y. Mohammed Iqbal, M. Mohamed Surputheen, S. Peerbasha, A COVID Net-predictor: A multi-head CNN and LSTM-based deep learning framework for COVID-19 diagnosis , The Scientific Temper: Vol. 16 No. 03 (2025): The Scientific Temper
- Krupali Bhatt, Tushharkumar Bhatt, Certain findings on the gamma graph of some graphs , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Pratibha Mehetre, A correlational study of identity status in relation to Parenting style among adolescents , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- Viji Parthasarathy, Manikandasaran S S, Feature Selection Techniques for IOT Crop Yield Prediction Using Smart Farming Sensor Data , The Scientific Temper: Vol. 17 No. 01 (2026): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

