A hybrid feature selection and generative adversarial network for lung and uterus cancer prediction with big data
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.66Keywords:
Lung and Uterus cancer, Improved Particle Swarm Optimization (IPSO) with fuzzy possibilitic C-Means clustering (FPCM), ANFIS and Modified Chicken Swarm Optimization (MCSO), Generative Adversarial Network (GAN)Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Among all diseases affecting humanity, lung cancer has consistently stood out as one of the deadliest. It ranks among the most prevalent cancers and is a significant contributor to cancer-related deaths. The disease is often asymptomatic in its early stages, making early detection extremely challenging. To enhance the accuracy of cancer detection with minimal time, an effective hybrid feature selection and classification model is developed in this research for the efficient detection of detect lung and uterus cancers while leveraging big data. The Piecewise Adaptive Weighted Smoothing-based Multivariate Rosenthal Correlative Target Projection (PAWS-MRCTP) comprises three main processes namely data acquisition, preprocessing, and feature extraction. In the data acquisition phase, a large number of cancer patient data are collected from lung cancer and uterus cancer detection datasets. Subsequently, the collected patient data undergo preprocessing. The preprocessing stage comprises three key processes namely handling missing data, noisy data, and outlier data. Firstly, the proposed PAWS-MRCTP is employed to address missing values, utilizing the Piecewise Adaptive Constant Interpolation method based on multiple available data points. Noisy data are identified using Gower's weighted smoothing technique, which detects data containing random variations or errors. Then the Improved Particle Swarm Optimization (IPSO) with fuzzy possibility C-Means clustering (FPCM) is introduced for the data clustering. And then the hybrid feature selection is performed using the ANFIS and Modified Chicken Swarm Optimization (MCSO). Finally, the classification of uterine and lung tumors is done using the Generative Adversarial Network (GAN). Consequently, in the experiments, the proposed model beats existing classifiers in detection accuracy while consuming the least time.Abstract
How to Cite
Downloads
Similar Articles
- NAVEEN KUMAR SHARMA, KAPIL KUMAR, A REVIEW OF HIMALAYAN BIODIVERSITY WITH REFERENCE TO UTTARAKHAND , The Scientific Temper: Vol. 10 No. 1&2 (2019): The Scientific Temper
- Naveen Kumar, Vikram Delu, Tarsem Nain, Anil Kumar, Pooja, Arbind Acharya, Exploring the therapeutic implications of nanoparticles for liquid tumors: A comprehensive review with special emphasis on green synthesis techniques in the context of Dalton’s lymphoma , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Balaji V, Purnendu Bikash Acharjee, Muniyandy Elangovan, Gauri Kalnoor, Ravi Rastogi, Vishnu Patidar, Developing a semantic framework for categorizing IoT agriculture sensor data: A machine learning and web semantics approach , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- T. Malathi, T. Dheepak, Enhanced regression method for weather forecasting , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- J. Helan Shali Margret, N. Amsaveni, Application of Lotka’s law in Indian cytokine publications: A scientometric study based on web of science during 1998 TO 2022 , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Ahmed Mustefa, Validating the dairy marketing performance of Mizan-Aman town, Bench-Sheko zone, Ethiopia , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- S. Nagarani, Amalraj P., Lakshay Phor, Nishank S. Pimple, Banashree Sen, Ramaprasad Maiti, Vikas S. Jadhav, Innovative technological advancements in solving real quadratic equations: Pioneering the frontier of mathematical innovation , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- R. Kalaiselvi, P. Meenakshi Sundaram, Machine learning-based ERA model for detecting Sybil attacks on mobile ad hoc networks , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Seema Rani Sarraf, S.N. Dubey, STRESS AND ACADEMIC ACHIEVEMENT IN RELATION TO DURATION OF SLEEP AND COURSE , The Scientific Temper: Vol. 8 No. 1&2 (2017): The Scientific Temper
- Shivali Kundan, Neha Verma, Zahid Nabi, Dinesh Kumar, Satellite radiance assimilation using the 3D-var technique for the heavy rainfall over the Indian region , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
<< < 16 17 18 19 20 21 22 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- V. Babydeepa, K. Sindhu, Piecewise adaptive weighted smoothing-based multivariate rosenthal correlative target projection for lung and uterus cancer prediction with big data , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper