A hybrid feature selection and generative adversarial network for lung and uterus cancer prediction with big data
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.66Keywords:
Lung and Uterus cancer, Improved Particle Swarm Optimization (IPSO) with fuzzy possibilitic C-Means clustering (FPCM), ANFIS and Modified Chicken Swarm Optimization (MCSO), Generative Adversarial Network (GAN)Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Among all diseases affecting humanity, lung cancer has consistently stood out as one of the deadliest. It ranks among the most prevalent cancers and is a significant contributor to cancer-related deaths. The disease is often asymptomatic in its early stages, making early detection extremely challenging. To enhance the accuracy of cancer detection with minimal time, an effective hybrid feature selection and classification model is developed in this research for the efficient detection of detect lung and uterus cancers while leveraging big data. The Piecewise Adaptive Weighted Smoothing-based Multivariate Rosenthal Correlative Target Projection (PAWS-MRCTP) comprises three main processes namely data acquisition, preprocessing, and feature extraction. In the data acquisition phase, a large number of cancer patient data are collected from lung cancer and uterus cancer detection datasets. Subsequently, the collected patient data undergo preprocessing. The preprocessing stage comprises three key processes namely handling missing data, noisy data, and outlier data. Firstly, the proposed PAWS-MRCTP is employed to address missing values, utilizing the Piecewise Adaptive Constant Interpolation method based on multiple available data points. Noisy data are identified using Gower's weighted smoothing technique, which detects data containing random variations or errors. Then the Improved Particle Swarm Optimization (IPSO) with fuzzy possibility C-Means clustering (FPCM) is introduced for the data clustering. And then the hybrid feature selection is performed using the ANFIS and Modified Chicken Swarm Optimization (MCSO). Finally, the classification of uterine and lung tumors is done using the Generative Adversarial Network (GAN). Consequently, in the experiments, the proposed model beats existing classifiers in detection accuracy while consuming the least time.Abstract
How to Cite
Downloads
Similar Articles
- M. A. Shanti, Optimizing predictive accuracy: A comparative study of feature selection strategies in the healthcare domain , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- AMITESH KUMAR, R.K. VERMA, STUDY OF BARDEEN COOPER STATE (BCS) TO BOSE EINSTEIN CONDENSATION (BEC) CROSSOVER , The Scientific Temper: Vol. 10 No. 1&2 (2019): The Scientific Temper
- Abhishek Pandey, V Ramesh, Puneet Mittal, Suruthi, Muniyandy Elangovan, G.Deepa, Exploring advancements in deep learning for natural language processing tasks , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- P. L. Parmar, P. M. George, Study and optimization of process parameters for deformation machining stretching mode , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Kanwar D Singh, Rashmi Ashtt, Barriers to last mile connectivity: The role of crime in metro station accessibility , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Ahmed Mustefa, Ethiopian Voluntary Resettlement Programme-Lesson to Learn , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Rama Rao J.V.G, Raja Gopal A.N.V.J, Ponnaganti S. Prasad, Illa V. Ram, Muthuvel B, Power quality improvement in BLDC motor drive using PFC converter , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Sruthy M.S, R. Suganya, An efficient key establishment for pervasive healthcare monitoring , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Krishna Deo Verma, A NOTE ON AGRICULTURE; CONCERNS,OPPORTUNITIES AND CHALLENGES , The Scientific Temper: Vol. 8 No. 1&2 (2017): The Scientific Temper
- Raja Selvaraj, Manikandasaran S. Sundari, EAM: Enhanced authentication method to ensure the authenticity and integrity of the data in VM migration to the cloud environment , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
<< < 11 12 13 14 15 16 17 18 19 20 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- V. Babydeepa, K. Sindhu, Piecewise adaptive weighted smoothing-based multivariate rosenthal correlative target projection for lung and uterus cancer prediction with big data , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper