Piecewise adaptive weighted smoothing-based multivariate rosenthal correlative target projection for lung and uterus cancer prediction with big data
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.65Keywords:
Lung and uterus cancer detection, big data, preprocessing, Piecewise Adaptive Constant Interpolation method, Gower's weighted smoothing technique, Peirce's statistical test, feature selection, Multivariate Rosenthal correlative target feature projection techniqueDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Cancer is the uncontrolled growth and spread of abnormal cells in the body. Early detection and prediction of cancer are crucial aspects of modern healthcare aimed at greatly improving the chances of survival for patients by reducing mortality rates and the number of people affected by this disease. Due to the large volume of data generated in the medical industry, accurate cancer detection is a challenging task. Many cancer classification systems using machine learning and deep learning models have been developed but accurate cancer detection with minimal time consumption remains a major challenging issue in the big data applications. To enhance the accuracy of cancer detection with minimal time, the Piecewise Adaptive Weighted Smoothing-based Multivariate Rosenthal Correlative Target Projection (PAWS-MRCTP) technique is introduced. This technique aims to detect lung and uterus cancers while leveraging big data. The proposed PAWS-MRCTP technique comprises three main processes namely data acquisition, preprocessing, and feature selection. In the data acquisition phase, a large number of cancer patient data are collected from lung cancer and uterus cancer detection datasets. Subsequently, the collected patient data undergo preprocessing. The preprocessing stage comprises three key processes namely handling missing data, noisy data, and outlier data. Firstly, the proposed PAWS-MRCTP is employed to address missing values, utilizing the Piecewise Adaptive Constant Interpolation method based on multiple available data points. Noisy data are identified using Gower's weighted smoothing technique, which detects data containing random variations or errors. Subsequently, outlier data are identified and removed by applying Peirce's statistical test. As a result, the pre-processed dataset is obtained resulting to minimize the time complexity. With the pre-processed dataset, the feature selection process is carried out to minimize the dimensionality of the large dataset. The proposed PAWS-MRCTP technique utilizes the Multivariate Rosenthal correlative target feature projection technique to identify the most relevant features. By selecting significant features, this approach enhances the accuracy of lung cancer and uterus cancer detection with minimal time consumption. Experimental assessment is conducted with different evaluation metrics such as cancer detection accuracy, precision, and cancer detection time and space complexity. The observed result shows the effectiveness of the proposed PAWS-MRCTP technique with higher accuracy with minimum time than the existing methods.Abstract
How to Cite
Downloads
Similar Articles
- D. Padma Prabha, C. Victoria Priscilla, A combined framework based on LSTM autoencoder and XGBoost with adaptive threshold classification for credit card fraud detection , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Lakshminarayani A, A Shaik Abdul Khadir, A blockchain-integrated smart healthcare framework utilizing dynamic hunting leadership algorithm with deep learning-based disease detection and classification model , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Nithya R, Kokilavani T, Joseph Charles P, Multi-objective nature inspired hybrid optimization algorithm to improve prediction accuracy on imbalance medical datasets , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Balaji V, Purnendu Bikash Acharjee, Muniyandy Elangovan, Gauri Kalnoor, Ravi Rastogi, Vishnu Patidar, Developing a semantic framework for categorizing IoT agriculture sensor data: A machine learning and web semantics approach , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Manpreet Kaur, Shweta Mishra, A smart grid data privacy-preserving aggregation approach with authentication , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- C. Muruganandam, V. Maniraj, A Self-driven dual reinforcement model with meta heuristic framework to conquer the iot based clustering to enhance agriculture production , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Abhishek Dwivedi, Shekhar Verma, SCNN Based Classification Technique for the Face Spoof Detection Using Deep Learning Concept , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- A. Sathya, M. S. Mythili, MOHCOA: Multi-objective hermit crab optimization algorithm for feature selection in sentiment analysis of Covid-19 Twitter datasets , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- N. Ruba, A. S. A. Khadir, Session password Blum–Goldwasser cryptography based user three layer authentication for secured financial transaction , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Rekha R., P. Meenakshi Sundaram, Trust aware clustering approach for the detection of malicious nodes in the WSN , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- V Babydeepa, K. Sindhu, A hybrid feature selection and generative adversarial network for lung and uterus cancer prediction with big data , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper