A secured routing algorithm for cluster-based networks, integrating trust-aware authentication mechanisms for energy-efficient and efficient data delivery
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.35Keywords:
Clustering, Optimal routing, Secured WSN, ECC, Data transmission, Energy consumption.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Secure routing in Wireless Sensor Networks (WSNs) is vital for preserving data veracity and privacy in the face of possible threats. Traditional routing protocols lack robust security mechanisms, making WSNs vulnerable to attacks. Secure routing protocols in WSNs aim to address these vulnerabilities by implementing authentication, encryption, and intrusion detection techniques to ensure secure and reliable data transmission while minimizing energy consumption. This paper proposes a novel secured routing algorithm tailored for cluster-based networks, aimed at enhancing energy efficiency and data delivery security by integrating trust-based authentication mechanisms. The approach begins with the design of a clustering algorithm, which organizes network nodes into clusters based on proximity or network topology. Subsequently, a trust-based authentication mechanism is developed to evaluate the reliability and integrity of both nodes and links within the network. Building upon these foundational elements, a secured routing protocol is devised to capitalize on the cluster-based organization and trust-based authentication, thereby facilitating energy-efficient and secure data transmission. The proposed algorithm and authentication mechanism Cluster and Optimal Routing Assisted Cryptograph (CORAC) are implemented within a simulated network environment to validate their efficacy. Performance evaluation is conducted through simulation studies, focusing on key metrics such as packet delivery ratio, energy consumption, and security effectiveness. This comprehensive approach aims to address the dual challenges of energy efficiency and data security in cluster-based networks, offering a promising solution for future deployments in various applications.Abstract
How to Cite
Downloads
Similar Articles
- J. Helan Shali Margret, N. Amsaveni, A study on recency patterns of cited resources in the cytokine publications from web of science , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Bommaiah Boya, Premara Devaraju, Integrating clinical and ECG data for heart disease prediction: A hybrid deep learning approach based on two modalities with particle swarm optimization , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- Amit Maru, Dhaval Vyas, Hybrid deep learning approach for pre-flood and post-flood classification of remote sensed data , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- K. Mohamed Arif Khan, A.R. Mohamed Shanavas, Optimizing IoT application deployment with fog - cloud paradigm: A resource-aware approach , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- S. Deepa, I.S. Arafat, M. Sathya Priya, S. Saravanan, An improved spectrum sharing strategy evaluation over wireless network framework to perform error free communications , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- K Sreenivasulu, Sameer Yadav, G Pushpalatha, R Sethumadhavan, Anup Ingle, Romala Vijaya, Investigating environmental sustainability applications using advanced monitoring systems , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Mohanapriya Jayapal, Hema Jagadeesan, Plant-microbe-dye interaction during rhizoremediation , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Elangovan G. Reddy, Anjana Devi V, Subedha V, Tirapathi Reddy B, Viswanathan R, A smart irrigation monitoring service using wireless sensor networks , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- M. Yamunadevi, P. Ponmuthuramalingam, A review and analysis of deep learning methods for stock market prediction with variety of indicators , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
- P. Hepsibah Kenneth, E. George Dharma Prakash Raj, Priority based parallel processing multi user multi task scheduling algorithm , The Scientific Temper: Vol. 16 No. 02 (2025): The Scientific Temper
<< < 4 5 6 7 8 9 10 11 12 13 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- V. Karthikeyan, C. Jayanthi, Advancements in image quality assessment: a comparative study of image processing and deep learning techniques , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- A. Rukmani, C. Jayanthi, Trust and security in wireless sensor networks: A literature review of approaches for malicious node detection , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- A. Rukmani, C. Jayanthi, Fuzzy optimization trust aware clustering approach for the detection of malicious node in the wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Annalakshmi D., C. Jayanthi, An asymmetric key encryption and decryption model incorporating optimization techniques for enhanced security and efficiency , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- V. Karthikeyan, C. Jayanthi, Improving image quality assessment with enhanced denoising autoencoders and optimization methods , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper

