Machine learning approaches for predicting species interactions in dynamic ecosystems
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.69Keywords:
Machine learning, Species interactions, Dynamic ecosystems, Predictive modeling, Comparative analysis, Performance evaluation.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This paper explores the application of machine learning (ML) techniques in predicting species interactions within dynamic ecosystems. Using a multi-faceted approach, we investigate the effectiveness of various ML algorithms in analyzing species interaction strengths through an example dataset. Visualizations, including bar, line, and pie charts, depict the distribution and patterns of species interactions, providing valuable insights into ecological dynamics. Additionally, a comparative analysis examines the data requirements and characteristics of four ML approaches: Generalized Linear Models (GLM), Classification and Regression Trees (CART), Artificial Neural Networks (ANN), and Evolutionary Algorithms (EA). By synthesizing information from previous studies, we elucidate the strengths and limitations of each ML approach in predicting species interactions. Furthermore, a performance evaluation of these approaches highlights their predictive capabilities across various metrics, including accuracy, precision, recall, and F1 score. Our research methodology provides a comprehensive understanding of the application of ML techniques in ecological research, laying the groundwork for future studies aiming to predict species interactions and advance our understanding of dynamic ecosystems.Abstract
How to Cite
Downloads
Similar Articles
- Akhtar Parwez, Jamaluddin Ahmad, Heavy Metal Pollution in Chapra (Bihar) , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- D. Jayaprasanth, J. Arul Melissa, Extended Kalman filter-based prognostic of actuator degradation in two tank system , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- P N TRIPATHI, EVALUATION OF SILKWORM RACES/HYBRIDS FOR CULTRE AT FARMERS’ LEVEL IN UTTAR PRADESH: APPROPRIATE TECHNIQUES , The Scientific Temper: Vol. 8 No. 1&2 (2017): The Scientific Temper
- Ratnakaram Raghavendra, Saila K. A. Reddy, Exploring cosmic ray energy loss mechanisms: Insights from Bethe-Bloch, modified bethe-bloch, and inverse compton scattering equations , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Poonam Sharma, Anindita S.Chaudhuri, Subhash Anand, Ankur Srivastava, Ashutosh Mohanty , Pravin Kokne, Measuring the relationship of land use land cover, normalized difference vegetation index and land surface temperature in influencing the urban microclimate in northeast Delhi, India , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- RUCHI SHARMA, YOUGESH KUMAR, STATISTICAL ANALYSIS OF MONOGENEAN POPULATIONS INFESTING FRESH WATER FISH CHANNA PUNCTATUS , The Scientific Temper: Vol. 10 No. 1&2 (2019): The Scientific Temper
- Rajeshwari D, C. Victoria Priscilla, An optimized real-time human detected keyframe extraction algorithm (HDKFE) based on faster R-CNN , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Kumari Sandhiya, Ashwani Pandey, Ruchi Sharma, Kaneez Fatima, Rukhsar Parveen, Naveen Gaurav, Assessment of Phytochemical and Antimicrobial Activity of Withania somnifera (Ashwagandha) , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- CHANDRA BHUSHAN TIWARY, ECOLOGICAL REALISM AND DIVERSITY STABILITY OF ZOOPLANKTONS IN DIFFERENT CLIMATIC CONDITIONS , The Scientific Temper: Vol. 10 No. 1&2 (2019): The Scientific Temper
- L. K. Mishra, A. P. Singh, AGE AND CREATIVITY: EFFECT OF CHRONOLOGICAL AGE ON MANAGER’S CREATIVITY , The Scientific Temper: Vol. 8 No. 1&2 (2017): The Scientific Temper
<< < 25 26 27 28 29 30 31 32 33 34 > >>
You may also start an advanced similarity search for this article.