MOHCOA: Multi-objective hermit crab optimization algorithm for feature selection in sentiment analysis of Covid-19 Twitter datasets
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.30Keywords:
Sentiment analysis, Machine learning, Hermit crab optimization, Covid-19, Feature selection, Evolutionary algorithms.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The COVID-19 pandemic has led to a flood of data on Twitter, making it crucial to analyze public opinion. However, the large amount of data is challenging to manage. This paper presents the multi-objective hermit crab optimization algorithm (MOHCOA) to tackle this problem by improving the accuracy of sentiment analysis, selecting the best features, and reducing computing time. Inspired by how hermit crabs choose their shells, MOHCOA balances exploring new features and using known ones, which helps in better sentiment classification while cutting down on unnecessary data and processing time. Compared to other methods, MOHCOA is more efficient in selecting features and improving model accuracy. For the bag of words (BoW) set, MOHCOA narrowed features down to 2005, and for the BoW + COVID-19 keywords set, it chose 2278 features. When used with a random forest model, MOHCOA achieved a precision of 0.84, recall of 0.69, F1-score of 0.75, and accuracy of 0.83. This shows that MOHCOA is effective in managing large data sets, making it a useful tool for analyzing text and public sentiment during events like the COVID-19 pandemic.Abstract
How to Cite
Downloads
Similar Articles
- Ruchi Sharma, Deepa ., Shelly Tyagi, Anju Panwar, Anju Panwar, Satyendra Kumar, Charu Tyagi, Yougesh Kumar, On Annual Cycle of Monogenean Parasites Infestation in Freshwater Fish Pangasius pangasius , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- MRINAL CHANDRA, “SPECTRAL STUDIES & ANTIMICROBIAL STUDIES ON Cu(II) WITH SCHIFF BASE CONTAINING SNS DONOR LIGANDS , The Scientific Temper: Vol. 8 No. 1&2 (2017): The Scientific Temper
- Manisha Pallvi, Fish Diversity and Fish Assemblage Analysis in Shatiya Wetland of North Bihar , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- Aditi Sahariya, Chellapilla Bharadwaj, Iwuala Emmanuel, Afroz Alam, Phytochemical Profiling and GCMS Analysis of Two Different Varieties of Barley (Hordeum vulgare L.) Under Fluoride Stress , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Amudavalli L, K. Muthuramalingam, Integrated energy-efficient routing and secure data management for location-aware wireless sensor networks with PFO leveraged improved fuzzy unequal clustering algorithm (IFUC) , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Santima Uchukanokkul, Bijal Zaveri, Impact of emerging global educational trends on overseas education programs for aspiring students in South East Asia and South Asia: A decadal analysis , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Vijay Kumar, Priya Thapliyal, Rajesh Rayal, Baljeet Singh Saharan, Arun Kumar, Shweta Sahni, The Molecular Profiling and HCV RNA Quantification to Study the Distribution of Different HCV Genotypes in Accordance to Geographical Condition , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- U. Perachiselvi, R. Balasubramani, Funding agencies in Tamil Nadu State Universities: A scientometric perspective , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Chirag Darji, Rajesh Chauhan, Views of undergraduates on Vikshit Bharat@2047 , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- UMASHANKAR SHUKLA, ANIL K. UPADHYAY, MATHEMATICAL MODEL FOR INFECTION AND REMOVAL IN POPULATION , The Scientific Temper: Vol. 10 No. 1&2 (2019): The Scientific Temper
<< < 25 26 27 28 29 30 31 32 33 34 > >>
You may also start an advanced similarity search for this article.