MOHCOA: Multi-objective hermit crab optimization algorithm for feature selection in sentiment analysis of Covid-19 Twitter datasets
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.30Keywords:
Sentiment analysis, Machine learning, Hermit crab optimization, Covid-19, Feature selection, Evolutionary algorithms.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The COVID-19 pandemic has led to a flood of data on Twitter, making it crucial to analyze public opinion. However, the large amount of data is challenging to manage. This paper presents the multi-objective hermit crab optimization algorithm (MOHCOA) to tackle this problem by improving the accuracy of sentiment analysis, selecting the best features, and reducing computing time. Inspired by how hermit crabs choose their shells, MOHCOA balances exploring new features and using known ones, which helps in better sentiment classification while cutting down on unnecessary data and processing time. Compared to other methods, MOHCOA is more efficient in selecting features and improving model accuracy. For the bag of words (BoW) set, MOHCOA narrowed features down to 2005, and for the BoW + COVID-19 keywords set, it chose 2278 features. When used with a random forest model, MOHCOA achieved a precision of 0.84, recall of 0.69, F1-score of 0.75, and accuracy of 0.83. This shows that MOHCOA is effective in managing large data sets, making it a useful tool for analyzing text and public sentiment during events like the COVID-19 pandemic.Abstract
How to Cite
Downloads
Similar Articles
- RUCHI SHARMA, YOUGESH KUMAR, STATISTICAL ANALYSIS OF MONOGENEAN POPULATIONS INFESTING FRESH WATER FISH CHANNA PUNCTATUS , The Scientific Temper: Vol. 10 No. 1&2 (2019): The Scientific Temper
- Vikas Chaudhary, Parul Jhajharia, Mediation of competitive advantage between strategy management practices and organizational performance , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Kumari Sandhiya, Ashwani Pandey, Ruchi Sharma, Kaneez Fatima, Rukhsar Parveen, Naveen Gaurav, Assessment of Phytochemical and Antimicrobial Activity of Withania somnifera (Ashwagandha) , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Ashoke D. Maliki, Taiwo A. Muritala, Saji George, Frank A. Ogedengbe, Impact of project financiers’ strategies on de-risking infrastructural projects: A conceptual review , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Ashutosh Kumar, The Effect of Noise Exposure on Cognitive Performance and Brain Activity Patterns , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Anita Yadav, Neerja Kapoor, Shivji Malviya, Sandeep K. Malhotra, COVID-19 Pandemic and the Global Vaccine Strategy , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- Nabab Ali, Equabal Jawaid, Spatial Insect Biodiversity and Community Analysis in Selected Rice Fields of North Bihar , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
- B Tharini, R. Rajasudha , A Kannammal, Performance analysis of microstrip patch antenna using binomial series expansion , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Dushyant Dave, Naresh Vyas, Impact of Textile Effluents on Soil in and Around Pali, Western Rajasthan, India , The Scientific Temper: Vol. 13 No. 01 (2022): The Scientific Temper
- Veena Pande, Manish Pande, MOLECULAR DIVERSITY OF ECTOMYCORRHIZAL FUNGI OF CENTRAL HIMALAYA OF INDIA: AN IMPORTANT COMPONENT OF FOREST ECOSYSTEM , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
<< < 18 19 20 21 22 23 24 25 26 27 > >>
You may also start an advanced similarity search for this article.