MOHCOA: Multi-objective hermit crab optimization algorithm for feature selection in sentiment analysis of Covid-19 Twitter datasets
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.30Keywords:
Sentiment analysis, Machine learning, Hermit crab optimization, Covid-19, Feature selection, Evolutionary algorithms.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The COVID-19 pandemic has led to a flood of data on Twitter, making it crucial to analyze public opinion. However, the large amount of data is challenging to manage. This paper presents the multi-objective hermit crab optimization algorithm (MOHCOA) to tackle this problem by improving the accuracy of sentiment analysis, selecting the best features, and reducing computing time. Inspired by how hermit crabs choose their shells, MOHCOA balances exploring new features and using known ones, which helps in better sentiment classification while cutting down on unnecessary data and processing time. Compared to other methods, MOHCOA is more efficient in selecting features and improving model accuracy. For the bag of words (BoW) set, MOHCOA narrowed features down to 2005, and for the BoW + COVID-19 keywords set, it chose 2278 features. When used with a random forest model, MOHCOA achieved a precision of 0.84, recall of 0.69, F1-score of 0.75, and accuracy of 0.83. This shows that MOHCOA is effective in managing large data sets, making it a useful tool for analyzing text and public sentiment during events like the COVID-19 pandemic.Abstract
How to Cite
Downloads
Similar Articles
- Amita Gupta, A study of the scientific approach inherited in the Indian knowledge system (IKS) , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Lakshmi Priya, Anil Vasoya, C. Boopathi, Muthukumar Marappan, Evaluating dynamics, security, and performance metrics for smart manufacturing , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Manikant Tripathi, Sukriti Pathak, Ranjan Singh, Pankaj Singh, Pradeep K. Singh, Nivedita Prasad, Sadanand Maurya, Awadhesh Kumar Shukla, Adsorptive remediation of hexavalent chromium using agro-waste rice husk: Optimization of process parameters and functional groups characterization using FTIR analysis , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Parul Yadav, Priyanka Suryavanshi, Storage study on compositional analysis of quinoa and ragi based snacks , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Poonam Sharma, Anindita S.Chaudhuri, Subhash Anand, Ankur Srivastava, Ashutosh Mohanty , Pravin Kokne, Measuring the relationship of land use land cover, normalized difference vegetation index and land surface temperature in influencing the urban microclimate in northeast Delhi, India , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- S. Sindhu, L. Arockiam, A lightweight selective stacking framework for IoT crop recommendation , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Tassar Aniam, Sneha Kanade, A study on the inventory management of perishable products , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Usmanova S. Bultakovna, Legal regulation of tourism services in the framework of the general agreement on trade in services , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- A. Tamilmani, K. Muthuramalingam, An enhanced support vector machine bbased multiclass classification method for crop prediction , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Nilesh Anute, Geetali Tilak, Revolutionizing e-Learning with AR, VR, And AI , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
<< < 15 16 17 18 19 20 21 22 23 24 > >>
You may also start an advanced similarity search for this article.