Enhancing classification accuracy on code-mixed and imbalanced data using an adaptive deep autoencoder and XGBoost
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.27Keywords:
Sentiment analysis, Deep learning, Code-mixing, Autoencoder, Imbalance classification.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This study introduces a pioneering approach for enhancing classification accuracy on code-mixed and imbalanced data by integrating an adaptive deep autoencoder with dynamic sampling techniques. Targeting the intricate challenges of sentiment analysis within such datasets, this methodology employs an enhanced XGBoost classifier, optimized to leverage the nuanced features extracted by the autoencoder. The experimental evaluation across diverse datasets, predominantly involving Tamil-English code-mixed texts, demonstrates a notable improvement in performance metrics: accuracy reached 84.2%, precision was recorded at 74.8%, recall stood at 78.4%, and the F1-Score achieved 76.6%. This marks an enhancement over existing methods by 0.5% to 1.5%, substantiating the model's robust capability in effectively handling linguistic diversity and class imbalances. The novelty of this research lies in the seamless integration of dynamic sampling within the autoencoder's training loop, significantly boosting the adaptability and effectiveness of the machine-learning model in real-world applications.Abstract
How to Cite
Downloads
Similar Articles
- Prince Williams, Nilesh M. Patil, Allanki S. Rao, Chandra M. V. S. Akana, K. Soujanya, Aakansha M. Steele, Transformative effects of connectivity technologies on urban infrastructure and services in smart cities , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Nilesh M. Patil, P M. Krishna, G. Deena, C Harini, R.K. Gnanamurthy, Romala V. Srinivas, Exploring real-time patient monitoring and data analytics with IoT-based smart healthcare monitoring , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Lakshmi Priya, Anil Vasoya, C. Boopathi, Muthukumar Marappan, Evaluating dynamics, security, and performance metrics for smart manufacturing , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- R. Selvakumar, A. Manimaran, Janani G, K.R. Shanthy, Design and development of artificial intelligence assisted railway gate controlling system using internet of things , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Deneshkumar V, Jebitha R, Jithu G, Multistate modeling for estimating clinical outcomes of COVID-19 patients , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Tursunova N. Isroilovna, Dilbar M. Almuradova, Orifjon A. Talipov, Features of diagnosing ovarian tumors in women of pre- and postmenopausal age , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Narmetova Y. Karimovna, Abdusamatov Khasanboy, Abdinazarova Iltifotkhon, Nurbaeva Khabiba, Mirzayeva Adiba, Psychoemotional characteristics in psychosomatic diseases , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Nisha Rathore, Purnendu B. Acharjee, K. Thivyabrabha, Umadevi P, Anup Ingle, Davinder kumar, Researching brain-computer interfaces for enhancing communication and control in neurological disorders , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Rajni Mathur, Bharti Singh, Anjali Kalse, Veena R. Kolte, Saloni Desai, Sameer Sonawane, Examining the impact of economic cycles on India’s information technology sector , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Ellakkiya Mathanraj, Ravi N. Reddy, Enhanced principal component gradient round-robin load balancing in cloud computing , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
<< < 40 41 42 43 44 45 46 47 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Ayesha Shakith, L. Arockiam, EMSMOTE: Ensemble multiclass synthetic minority oversampling technique to improve accuracy of multilingual sentiment analysis on imbalance data , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Sindhu S, L. Arockiam, DRMF: Optimizing machine learning accuracy in IoT crop recommendation with domain rules and MissForest imputation , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- S. Sindhu, L. Arockiam, A lightweight selective stacking framework for IoT crop recommendation , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper

