
Abstract
This study introduces a pioneering approach for enhancing classification accuracy on code-mixed and imbalanced data by integrating 
an adaptive deep autoencoder with dynamic sampling techniques. Targeting the intricate challenges of sentiment analysis within 
such datasets, this methodology employs an enhanced XGBoost classifier optimized to leverage the nuanced features extracted by the 
autoencoder. The experimental evaluation across diverse datasets, predominantly involving Tamil-English code-mixed texts, demonstrates 
a notable improvement in performance metrics: accuracy reached 84.2%, precision was recorded at 74.8%, recall stood at 78.4%, and 
the F1-score achieved 76.6%. This marks an enhancement over existing methods by 0.5 to 1.5%, substantiating the model’s robust 
capability in effectively handling linguistic diversity and class imbalances. The novelty of this research lies in the seamless integration 
of dynamic sampling within the autoencoder’s training loop, significantly boosting the adaptability and effectiveness of the machine-
learning model in real-world applications.
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Introduction
In the digital age, social media platforms have emerged 
as prolific data generation sources, with millions of users 
interacting daily through posts, comments, and messages 
(Mindel, V, et al., 2024). This vast volume of data is not only 
a reflection of current trends and public opinion but also 
serves as a rich resource for various applications such as 
market analysis, political forecasting, and customer service 
improvements (Blazquez, D., et al., 2018). Particularly, 
sentiment analysis leverages this data to gauge public 
sentiment, enabling organizations to understand consumer 

emotions and reactions towards products, services, or 
events (Sykora M, et al.,2022). However, the utility of this 
data is contingent upon the ability to accurately analyze 
and interpret the content, which is often presented in 
informal, abbreviated, or colloquial language, adding layers 
of complexity to data processing (Abualigah L, et al., 2021).

One of the significant challenges in leveraging social 
media data for sentiment analysis arises from the prevalence 
of code-mixed text (Thara S, et al., 2022, Jamatia A, et al., 2020), 
(Ahmad G. I., et al., 2022, Astuti L. W, et al., 2023). Code-mixing, 
a common linguistic phenomenon in multilingual regions, 
involves switching between two or more languages within a 
sentence or discourse (Jamatia A, et al., 2020). This practice, while 
reflective of cultural diversity and linguistic behavior, poses 
unique challenges for computational analysis (Veeramani  
H, et al., 2024). Traditional natural language processing tools 
are often ill-equipped to handle the syntactic and semantic 
irregularities introduced by code-mixing, leading to decreased 
accuracy in sentiment classification (Perera A, et al., 2024)

Moreover, the datasets derived from social media are 
typically imbalanced, with uneven distributions of sentiment 
classes, further complicating the training and effectiveness 
of predictive models (Huang J. Y. et al., 2022). Addressing 
these challenges requires innovative approaches that 
can robustly handle the complexities of code-mixed and 
imbalanced datasets (Bölücü N, et al., 2024).
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The motivation behind the development of advanced 
sentiment analysis tools for code-mixed data stems from 
the increasing globalization and digital communication 
which fuse linguistic boundaries, creating a rich tapestry 
of multicultural interactions online. As businesses and 
governments seek to engage with and understand diverse 
global audiences, the need to navigate and analyze 
multilingual content effectively becomes critical. This is 
particularly pertinent in regions with high bilingualism 
where code-switching in digital communication is a norm 
rather than an exception. The ability to accurately assess 
sentiments from such complex datasets not only enhances 
customer interaction and satisfaction but also aids in the 
nuanced understanding of social dynamics and cultural 
nuances that are often embedded in language use. This 
involves innovating solutions that can leverage deep 
learning to discern patterns and nuances in mixed-language 
texts, thereby providing more accurate and contextually 
relevant insights into public sentiment and opinion.

The contribution of this research is manifold, centering 
around the innovative integration of dynamic sampling 
techniques within an autoencoder’s training loop and 
the strategic enhancement of the XGBoost algorithm to 
optimize its performance for complex, code-mixed text 
datasets. 

Firstly, the incorporation of dynamic sampling, 
specifically through synthetic minority over-sampling 
technique - edited nearest neighbors (SMOTE-ENN), directly 
within the training process of the autoencoder, represents 
a novel approach. This integration allows the model to 
continuously adjust to the imbalances in the dataset during 
the training phase rather than as a preprocessing step. This 
real-time adjustment ensures that the feature extraction is 
not only adaptive but also sensitive to the minority classes, 
significantly enhancing the robustness and accuracy of the 
sentiment analysis.

Secondly, the enhancement of XGBoost in this framework 
involves tailoring it to work seamlessly with the deep 
features extracted by the autoencoder. This includes 
tuning hyperparameters specifically for handling the 
complexities of code-mixed data, such as adjusting the 
‘scale_pos_weight’ to compensate for class imbalances 
and optimizing the depth and number of trees to capture 
nuanced linguistic patterns effectively. The enhanced 
XGBoost model, therefore, is not merely a standalone 
classifier but a sophisticated component that exploits the 
rich, nuanced features provided by the autoencoder, leading 
to improved classification outcomes.

This paper is systematically organized into several key 
sections to ensure a thorough presentation of the research. 
Following the introductory remarks that set the stage for 
the significance and need for advanced sentiment analysis 
tools, the paper delves into a comprehensive review of 
related work, highlighting past efforts and current trends in 

handling code-mixed text. The methodology section then 
details the innovative approaches employed in this study, 
including the architecture of the adaptive deep autoencoder, 
the integration of dynamic sampling techniques, and the 
enhancements made to the XGBoost classifier. Subsequent 
sections provide a detailed description of the experimental 
setup, including data preparation, model configuration, and 
the parameters used, followed by an in-depth discussion of 
the results, showcasing the effectiveness of the proposed 
solutions through various performance metrics. The 
paper concludes with a discussion that interprets these 
results, outlines the limitations encountered, and proposes 
directions for future research. 

Related Work
Sentiment analysis of social media content presents a critical 
area of research, providing valuable insights into public 
opinion and behaviors. The prevalence of social media has 
resulted in the generation of vast amounts of data daily, 
characterized by diverse linguistic forms, including code-
mixed text where two or more languages are combined. 
This phenomenon is particularly common in multilingual 
societies, where users often switch between languages, 
creating texts that are not strictly bound to the syntactic or 
semantic rules of a single language. 

The task of sentiment analysis in such code-mixed 
environments introduces specific challenges, primarily 
due to the linguistic complexity and the sparsity of labeled 
data for training machine learning models (Saini J. R, et al., 
2023). Most traditional sentiment analysis tools are designed 
for monolingual text and struggle with the irregularities 
presented by code-mixing, such as unexpected grammatical 
structures and mixed-language entities. Moreover, the data 
collected from social media is often imbalanced, with the 
overrepresentation of some sentiments over others, further 
complicating the development of robust sentiment analysis 
systems (Saini, J. R., et al., 2023).

Recent research has highlighted these challenges, 
with studies such as the SemEval-2020 Task 9 exploring 
sentiment analysis for code-mixed tweets in languages like 
Hindi-English and Spanish-English, demonstrating varied 
success across different language pairs (Rogers D, et al., 2021) 
(Sengupta A, et al., 2021). These studies emphasize the need 
for innovative solutions that can adapt to the intricacies 
of code-mixed text while effectively managing dataset 
imbalances. For example, efforts in developing datasets and 
benchmarks specifically for code-mixed languages aim to 
foster advancements in this field, as seen in the creation of 
sentiment analysis corpora for languages like Malayalam-
English and Kannada-English (Astuti L. W, et al., 2023), 
(Chakravarthi B. R, et al., 2022). These foundational works 
set the stage for further exploration and development of 
advanced analytical tools capable of handling the complex 
dynamics of code-mixed sentiment analysis.
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Further advancements in the field of code-mixed sentiment 
analysis have been reported, reflecting the ongoing efforts 
to refine methodologies and broaden the linguistic scope 
of analysis (Shanmugavadivel, K, et al., 2022), (Nankani, 
H, Dutta, et al., 2020), (Yusuf, A, et al., 2024). Notably, a 
study conducted by Mohammad Tareq et al. presented 
an innovative approach to enhancing cross-linguistic 
contextual understanding through data augmentation 
techniques (Dey, S, et al., 2024). underscores the importance 
of developing tailored augmentation strategies to improve 
the robustness of sentime nt analysis models in handling 
code-mixed languages (Mohammad Tareq et al., 2023).

Another significant contribution is from the work of 
(Kumaresan et al., 2023) where researchers developed 
multitasking models that outperform traditional single-task 
systems in sentiment and emotion recognition tasks. This 
study demonstrates an F1 score improvement, highlighting 
the efficiency of multitasking architectures in extracting and 
processing complex emotional cues from code-mixed texts.

Proposed Methodology

Adaptive Deep Autoencoder with Dynamic Sampling
The core of our methodology is the adaptive deep autoencoder 
designed to effectively handle the complexities of code-
mixed text data. The autoencoder architecture consists of 
multiple layers, each aimed at decomposing the text data into 
a more manageable and representative form. This includes 
an input layer, several hidden layers, and a bottleneck layer 
where the data is most compressed, facilitating the extraction 
of salient features crucial for sentiment analysis. What sets our 
autoencoder apart is the integration of dynamic sampling 
techniques directly into its training loop. We employ SMOTE-
ENN within the training process to address class imbalance 
by synthesizing new minority class samples and cleaning 
overlapping samples, respectively. This integration allows 
the autoencoder to continuously adjust to the diversity and 
imbalance of the dataset, enhancing its ability to generalize 
from training data to real-world applications.

Model design
The architecture of the adaptive deep autoencoder is 
meticulously designed to tackle the nuances of code-mixed 
text data, providing a powerful tool for feature extraction 
that adapts to both the complexity and imbalance of the 
dataset. Here’s a detailed breakdown of the autoencoder’s 
architecture:

Input layer
The first layer of the autoencoder receives the input data, 
which consists of high-dimensional vectors representing the 
code-mixed text. These vectors are typically derived from 
embedding techniques such as word embeddings or TF-IDF 
vectorization, which transform the raw text into a numerical 
format that neural networks can process.

Encoding layers
Following the input layer, several encoding layers are used 
to progressively compress the data into a more compact 
representation. Each encoding layer consists of a fully 
connected (dense) neural network layer followed by a 
non-linear activation function. Usually, rectified linear unit 
(ReLU) introduces non-linearity into the model. These layers 
are responsible for capturing and encoding the underlying 
patterns and structures in the data, reducing dimensionality 
while retaining crucial information.

Bottleneck layer
At the heart of the autoencoder is the bottleneck layer, where 
the data representation is at its most compressed form. This 
layer is crucial as it serves as the feature extraction phase of 
the model, where the most salient and robust features of 
the input data are retained. The bottleneck layer’s design is 
pivotal in determining the quality and effectiveness of the 
features extracted, influencing the overall performance of 
the sentiment analysis.

Decoding layers
Symmetric to the encoding layers, the decoding layers aim 
to reconstruct the input data from the compressed form. 
These layers gradually expand the compressed data back to 
its original dimensionality, using a similar structure of dense 
layers and non-linear activation functions. The decoding 
process is essential for the autoencoder to learn a lossy but 
efficient representation of the input data, minimizing the 
loss between the original and reconstructed data.

Output layer
The final layer of the autoencoder outputs the reconstructed 
data, matching the dimensionality of the input layer. This 
layer typically uses a sigmoid or linear activation function, 
depending on the nature of the input data, to ensure that 
the output values are in a suitable range.

Dynamic Sampling Integration
Uniquely, this autoencoder incorporates dynamic sampling 
within its training loop, specifically using SMOTE-ENN. This 
integration occurs between the encoding and decoding 
phases, where the encoded features are dynamically 
resampled to address class imbalances before being passed 
to the decoding layers. By embedding SMOTE-ENN directly 
into the autoencoder, the model continually adapts to the 
evolving class distributions during training, enhancing 
its sensitivity to minority classes and improving overall 
classification performance.

Dynamic sampling integration
The integration of dynamic sampling techniques within 
the training process of the adaptive deep autoencoder is a 
critical component of our methodology, specifically tailored 
to address the challenges of class imbalance in code-mixed 
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text data. The mechanism chosen for this integration is 
SMOTE-ENN, which combines the over-sampling of the 
minority classes with the under-sampling of the majority 
classes to create a more balanced dataset.

SMOTE integration
SMOTE works by synthesizing new instances for minority 
classes. This is achieved by first selecting a minority class 
sample and then randomly choosing one of its k-nearest 
neighbors also belonging to the minority class. A synthetic 
sample is then generated by interpolating between the two 
selected samples. Mathematically, the synthetic sample  is 
given by:

where  is the feature vector of the original sample,  is 
the feature vector of the randomly selected neighbor, and  
is a random number between 0 and 1. This process effectively 
generates new data points along the line segments 
connecting minority class samples in the feature space.

ENN integration
After generating synthetic samples via SMOTE, the ENN 
algorithm is used to clean the data by removing any 
generated synthetic samples that are too noisy. ENN works 
by examining each sample in the dataset and removing it if 
the majority of its k-nearest neighbors belong to a different 
class. This can be formalized as:

where  are the class labels of the k-nearest neighbors 
of , y is the class label of  is the indicator function.

Integration within Autoencoder Training
The integration of SMOTE-ENN into the autoencoder’s 
training process is strategically placed between the 
encoding and decoding stages. After passing the input 
data through the encoding layers of the autoencoder to 
produce a compressed representation, SMOTE is applied 
to generate additional minority class samples, directly 
addressing the class imbalance in this compressed feature 
space. Subsequently, ENN is employed to remove any 
outliers or noisy samples introduced by SMOTE. The cleaned, 
balanced dataset is then passed through the decoding 
layers to reconstruct the data, completing the autoencoder 
training loop.

Optimization
The optimization of the adaptive deep autoencoder involves 
carefully designed loss functions and strategies that are 
crucial for effectively training the model to handle both 
the reconstruction of input data and the challenges of class 
imbalance. The optimization process aims to ensure that the 
autoencoder learns meaningful and discriminative features, 
which are vital for the subsequent classification tasks.

Loss functions
The overall loss function for the adaptive deep autoencoder is 
a composite of two main components: the reconstruction loss 
and the classification loss, enhanced by dynamic sampling.

Reconstruction loss
This is the primary loss function during the autoencoder 
training and is typically defined as the mean squared error 
(MSE) between the input vectors and their reconstructed 
outputs. Mathematically, the reconstruction loss  for a 
batch of data can be expressed as:

where  is the input vector,  is the reconstructed 
output, and n is the number of samples in the batch.

Classification loss
To incorporate the feedback from the classification phase 
into the autoencoder training, a cross-entropy loss is often 
used when the downstream task involves classification. For 
a dataset that has been dynamically sampled to address 
class imbalance, the classification loss  for the predicted 
outputs can be defined as:

where  are the true labels and  are the predicted 
probabilities for the class labels, derived from the bottleneck 
features of the autoencoder through the classifier.

Optimization strategy
The optimization strategy employed in training the adaptive 
deep autoencoder involves the use of gradient descent 
algorithms, specifically adaptive moment estimation (Adam), 
which is well-suited for problems with large datasets and 
parameters. Adam combines the advantages of two other 
extensions of stochastic gradient descent, namely AdaGrad 
and RMSProp, by computing adaptive learning rates for 
each parameter. The update rules for the parameters using 
Adam are given by:

where:
 are the parameters of the model,
 is the learning rate,

 are estimates of the first and second moments 
of the gradients,

 is a small scalar added for numerical stability.

Algorithm 1: Train Adaptive Deep Autoencoder with 
Dynamic Sampling
Inputs
•	 X: Input dataset containing code-mixed text data, split 

into mini-batches 
•	 Y: Corresponding labels for the input data, split into 

mini-batches 



2602	 Shakith and Arockiam	 The Scientific Temper. Vol. 15, No. 3

•	 E: Number of training epochs.
•	 : Learning rate for parameter updates.
•	 : Regularization parameter to balance reconstruction 

and classification loss.
•	 S: Sampling function applying SMOTE+ENN.

Outputs

•	 : Optimized parameters of the adaptive deep 
autoencoder.

Procedure

Initialization
Initialize the autoencoder parameters  (weights and biases 
across all layers).

Epoch Loop:
for e = 1 to E do:
Shuffle the mini-batches X to ensure diverse training 

samples in each epoch.
Batch Processing:
for each batch  do:
Encode and Decode:
Pass batch  through the autoencoder to obtain the 

reconstructed batch :

Calculate Reconstruction Loss:
Compute the reconstruction loss  using the mean 

squared error (MSE) between the original and reconstructed 
data:

Dynamic Sampling:
Apply the SMOTE+ENN technique to the encoded 

representations  and corresponding labels  to adjust 
the class distribution:

Backpropagation and Parameter Update:
Update the parameters  by backpropagating the 

combined loss  where  is the classification 
loss derived from the preliminary classifier feedback (if any):

End Batch Loop
End Epoch Loop
Return:
Return the optimized parameters  of the adaptive deep 

autoencoder.

Feature Extraction
Following the encoding by the autoencoder, the next step 
involves extracting and processing the features necessary 
for classification. The bottleneck layer of the autoencoder 
serves as the primary source for these features, offering a 
condensed yet comprehensive representation of the input 

data. This feature set is then prepared for classification, with 
each feature vector encapsulating the essential linguistic 
elements required for determining sentiment. This process 
ensures that the classifier is provided with the most relevant 
and informative features, stripped of unnecessary noise and 
redundancy.

Feature Encoding
The feature encoding process in the adaptive deep 
autoencoder is a critical step where the high-dimensional 
input data is transformed into a compressed, lower-
dimensional representation. This encoding not only reduces 
the dimensionality of the data but also extracts the most 
salient features necessary for effective sentiment analysis, 
particularly for code-mixed texts where linguistic patterns 
are complex and varied.

Encoding mechanism
The autoencoder achieves this transformation through a 
series of layers, each designed to progressively compress 
the input data while retaining essential information. The 
process begins at the input layer, where raw text data is 
first converted into numerical format using techniques 
like TF-IDF or word embeddings. These numerical 
representations, typically high-dimensional sparse vectors, 
serve as the input to the autoencoder.

Layer-wise transformation
Each layer in the encoding part of the autoencoder consists 
of a linear transformation followed by a non-linear activation 
function, which helps to capture non-linear relationships 
in the data. The transformation at each layer l can be 
mathematically represented as:

where:
 is the output from the previous layer (or the input 

vector for l = 1),
 are the weights and biases for the layer l,

 is the non-linear activation function, typically ReLU 
(Rectified Linear Unit) for intermediate layers.

Bottleneck feature representation
The bottleneck layer is where the data is the most 
compressed and represents the core of the autoencoder’s 
feature extraction capability. This layer’s output, 
, serves as the encoded feature set. It is crucial because 
it contains the condensed information of the input data, 
stripped of redundancies yet rich enough to enable accurate 
reconstruction and classification. The bottleneck features 
are given by:

Optimization of encoding
The objective during the encoding process is to minimize 
information loss despite reducing the dimensionality. This 
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is typically achieved by optimizing the reconstruction 
loss as part of the overall training of the autoencoder. The 
reconstruction loss ensures that the encoded data  
can be effectively used to regenerate the input data in the 
decoding phase, thus validating the retention of essential 
information.

Data Handling
Once the feature encoding process is complete, the resulting 
lower-dimensional encoded data must be carefully handled 
and processed to make it suitable for the subsequent 
classification tasks. This step is crucial in ensuring that 
the features extracted by the autoencoder are effectively 
utilized by the classifier, maintaining the integrity and 
relevance of the data throughout the analysis pipeline. The 
data handling process involves several key steps:

Normalization
Before feeding the encoded features into the classifier, 
it’s essential to normalize the data to ensure that all 
features contribute equally to the classification process. 
Normalization typically involves scaling the feature vectors 
so that they have a mean of zero and a standard deviation of 
one. This step helps in preventing any feature with inherently 
higher numeric ranges from dominating the decision-
making process of the classifier. The normalization can be 
mathematically expressed as:

where  is the i-th feature in the encoded feature 
vector,  is the mean of the i-th feature across all samples, 
and  is the standard deviation of the i-th feature.

Feature selection
Although the autoencoder is designed to compress and 
retain the most informative features, further feature 
selection can be performed to eliminate any residual noise 
or redundant features. This step is particularly beneficial 
when dealing with complex data structures or in scenarios 
where computational efficiency is critical. Techniques such as 
principal component analysis (PCA) or more targeted feature 
selection methods can be employed to refine the feature set.

Data augmentation
In cases where the class distribution remains imbalanced 
despite the initial handling by the autoencoder, data 
augmentation strategies can be applied to the encoded 
features to further balance the classes. This might involve 
techniques such as oversampling the minority class 
or undersampling the majority class, potentially using 
synthesized samples based on the encoded features to 
enhance the diversity and quantity of training data.

Partitioning
The processed data is then partitioned into training, 
validation, and test sets. This partitioning is critical for 

training the classifier effectively and for evaluating its 
performance accurately. Typically, the data is split in a 
stratified manner to ensure that each partition reflects the 
overall distribution of classes, thereby providing a robust 
basis for training and performance evaluation.

Integration into classifier
Finally, the prepared feature vectors are fed into the 
classifier— in this case, an enhanced XGBoost model. At this 
stage, the classifier utilizes the rich, processed features to 
learn the underlying patterns and make accurate predictions 
regarding the sentiment of each input sample.

Algorithm 2: Extract Features from Adaptive Deep 
Autoencoder

Inputs
•	 X: Full input dataset containing code-mixed text data.

•	  Optimized parameters from the trained adaptive deep 
autoencoder (obtained from Algorithm 1).

Outputs
D: Encoded feature set derived from the bottleneck layer of 
the adaptive deep autoencoder.

Procedure
Feature Extraction:

Pass the entire dataset X through the encoder part of the 
adaptive deep autoencoder to extract compressed features:

Here,  represents the encoding function of the 
deep autoencoder parameterized by , which maps the 
high-dimensional input data X into a lower-dimensional 
encoded feature set D.

Return
Return the encoded feature set D, which will be used for 
further classification tasks.

Enhanced XGBoost Training and Prediction
To capitalize on the refined features extracted by the 
autoencoder, we employ an enhanced version of the XGBoost 
algorithm for the classification task. This enhancement 
involves tuning XGBoost to optimize its performance 
specifically for the code-mixed and imbalanced data 
scenario. Adjustments include configuring the maximum 
depth of trees to allow for complex decision boundaries 
and fine-tuning the scale position weight to adequately 
represent the minority classes in the data. The model is 
trained on these features with a focus on maximizing 
both accuracy and class balance, ensuring that each class, 
regardless of its frequency in the dataset, is treated with 
equal importance during the learning process. The final 
prediction step involves converting the probabilities 
generated by XGBoost into class labels, determining the 
sentiment expressed in each input sample.
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Model configuration
The enhanced XGBoost model is meticulously configured 
to capitalize on the encoded features provided by the 
adaptive deep autoencoder, ensuring optimal performance 
in classifying sentiments from code-mixed text. XGBoost, an 
advanced implementation of gradient boosting machines, is 
renowned for its efficiency and effectiveness across a wide 
range of applications. 

Parameter tuning
Key parameters of the XGBoost model are tuned to handle 
the specific challenges posed by the high-dimensional, 
encoded feature space and the class imbalance inherent in 
the dataset. These parameters include:
•	 max_depth: Controls the maximum depth of each tree, 

which affects the model’s ability to model complex 
patterns. Typically set based on the complexity of the data.

•	  (learning rate): Determines the step size at each 
iteration while moving toward a minimum of a loss 
function. A smaller eta makes the model more robust 
to overfitting but may require more iterations.

•	 scale_pos_weight: Adjusts the balance of positive to 
negative classes, which is crucial for datasets with 
imbalanced classes.

•	 objective: Set to ‘binary:logistic’ for binary classification 
tasks, which outputs probability scores.

The configuration can be mathematically expressed in 
the initialization of the XGBoost classifier:

Training process
The training process of the XGBoost model involves several 
steps designed to ensure that the model learns effectively 
from the encoded features:
•	 Feature input: Encoded features  are input into the 

model, which are the output from the autoencoder’s 
bottleneck layer.

•	 Model training: XGBoost applies an ensemble of decision 
trees to the features. Each tree is built sequentially, with 
each new tree learning to correct the errors made by 
the previous trees. The update rule for the weights in 
XGBoost during the t-th iteration can be expressed as:

where w are the weights,  is the learning rate,  is the 
learning objective contribution from each tree, and  
is the gradient of the loss function, which is computed 
to minimize prediction errors.

•	 Cross-validation: To assess the model’s performance and 
avoid overfitting, cross-validation is employed, splitting 
the dataset into multiple subsets (folds) to validate the 
model’s performance against unseen data.

Once trained, the XGBoost model is used to predict 
sentiments on new, unseen data:
•	 Probability estimation: The model outputs a probability 

score for each instance being positive, based on the 
learned patterns. This is given by the logistic function 
applied to the ensemble’s output:

where  is the sum of predictions from all trees for 
the input vector .

•	 Thresholding: To convert these probabilities into binary 
class labels (positive or negative), a threshold is applied. 
Typically, a threshold of 0.5 is used:

Algorithm 3: Train and Predict Using Enhanced 
XGBoost

Inputs
•	 D: Encoded feature set derived from the adaptive deep 

autoencoder (output of Algorithm 2).
•	 Y: Ground truth labels corresponding to D.

•	 : Learning rate for XGBoost.

•	 : Number of boosting rounds for XGBoost.

Outputs
: Predicted labels from the enhanced XGBoost classifier.

Procedure
•	 Initialize XGBoost parameters:

Define model parameters including  and specific 
parameters for handling imbalanced data such as 
`scale_pos_weight .̀

•	 Train XGBoost
Create a DMatrix from D and Y for optimized performance:

Configure parameters for training, focusing on imbalance 
and classification optimization:

Execute training:

•	 Prediction
Predict using the trained model on D:

•	 Post-processing (if applicable):

Convert probabilities  to class labels based on a 
threshold, typically 0.5 for binary classification:

•	 Return
Return , the predicted labels.
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Experimental Setup
The experimental evaluation of the proposed ADADEX 
was conducted using several publicly available code-
mixed datasets that comprise text data mixed primarily 
between English and Tamil. These datasets were sourced 
from diverse social media platforms to ensure a realistic 
representation of code-mixed language usage in informal 
communication. Each dataset was preprocessed to convert 
raw text into a numerical format suitable for machine 
learning. This preprocessing involved tokenization, removal 
of stop words, normalization of text, and the use of TF-IDF 
vectorization to transform the text into a feature vector. 
Further preprocessing steps included encoding categorical 
labels into a binary format to align with the sentiment 
analysis task (positive and negative sentiments).

Model configuration and parameters
For the adaptive deep autoencoder, we configured the 
model with three hidden layers, each followed by batch 
normalization and dropout layers to prevent overfitting 
(Table 1). The dimensionality of the bottleneck layer was 
set based on the complexity of the dataset and preliminary 
experiments that aimed to balance between compression 

and information retention. The SMOTE+ENN algorithm was 
integrated within the training loop to dynamically adjust the 
class distribution of the mini-batches based on the detection 
of imbalance at runtime.

The XGBoost model was enhanced by configuring its 
hyperparameters to optimize performance on imbalanced 
and complex feature sets. Parameters such as the number 
of boosting rounds, max depth, learning rate, and `scale_
pos_weight` were fine-tuned using grid search and cross-
validation on a separate validation set to find the optimal 
settings for each dataset. 

Results
The proposed method, which integrates an adaptive deep 
autoencoder with dynamic sampling techniques and an 
enhanced XGBoost classifier, demonstrates significant 
improvements in the classification of code-mixed and 
imbalanced data. The experimental evaluation, conducted 
across datasets involving Tamil-English (Ta-En) code-mixed 
texts, shows promising results.

Table 2 depicts the overall results. The accuracy achieved 
by the proposed system was 84.2%, a slight enhancement 
over existing methods, indicating a robust capability in 

Table 1: Model configuration and parameter settings

Model Component Parameter Description Value/Setting

Adaptive Deep 
Autoencoder

Number of layers Total hidden layers including input and 
bottleneck

3 layers

Activation function Function used in hidden layers ReLU

Dropout rate Fraction of the input units to drop 0.5

Batch normalization Method to stabilize and accelerate learning Applied after each hidden layer

Bottleneck dimension Size of the bottleneck layer Determined by dataset complexity

Learning rate (η) Step size at each iteration 0.01

Regularization (λ) Trade-off between reconstruction and 
classification loss

0.1

Enhanced 
XGBoost

Number of boosting rounds Number of boosting stages to run 100

Max depth Maximum depth of a tree 6

Learning rate (η) Step size shrinkage used in update 0.1

Scale pos weight Weight for class balancing Calculated based on class distribution

Objective Specify the learning task and the corresponding 
learning objective

‘binary’

Table 2: Comparative results table

Metric ADADEX (%) (Balouchzahi, F(i).,
et al., 2021) (%)

(Kumaresan, C.,
et al., 2023) (%)

(Balouchzahi, F(ii)., et al., 2021, April) 
(%)

Accuracy 84.2 NA NA NA

F1-Score 76.6 61.9 71.85 75

Precision 74.8 61.2 72.2 74

Recall 78.4 64.4 71.5 77
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handling diverse linguistic features and imbalances within 
the data. F1-Score reached 76.6%, reflecting a balanced 
performance between precision and recall, particularly 
beneficial in scenarios where class imbalance typically skews 
performance metrics. Precision was recorded at 74.8%, 
illustrating the model’s accuracy in identifying true positive 
cases across classes. Recall stood at 78.4%, indicating the 
model’s effectiveness in capturing a high number of actual 
positive instances.

The CoSaD model previously achieved F1-scores as 
discussed, showing the effectiveness of machine learning 
classifiers with majority voting. The proposed ADADEX 
model surpassed these results by effectively utilizing 
advanced machine learning techniques that integrate 
directly with deep learning-enhanced feature extraction. 
ELSA and DravidianLangTech also presented competitive 
models but generally focused on conventional machine 
learning or basic deep learning approaches without the 
sophisticated integration of dynamic sampling techniques 
that the proposed model employs.

The confusion matrix derived from the proposed system 
provides an insightful representation of model performance 
across various classes such as positive, negative, mixed 
feelings, unknown state, and other languages. Notably:
•	 The positive and negative classes show high true positive 

rates, indicating strong model performance in these 
categories.

•	 Mixed feelings and unknown state classes exhibit some 
confusion, likely due to the inherent complexity and 
subtlety of these sentiments in code-mixed contexts, 
which poses challenges in accurate classification.

•	 The matrix also highlights areas where misclassifications 
occur, primarily between closely related sentiment 

classes, suggesting potential areas for further refinement 
in feature engineering and class differentiation strategies.

Discussion

Interpretation of Results
The proposed method integrates an adaptive deep 
autoencoder with dynamic sampling and an enhanced 
XGBoost classifier to effectively tackle the challenges 
associated with code-mixed and imbalanced data. The 
improvements in classification accuracy, precision, and recall 
over existing models can be attributed to several key factors:

Adaptive feature engineering
The deep autoencoder dynamically adjusts to the complexity 
of the input data, extracting meaningful features that are 
crucial for accurate classification. This adaptive capability 
allows the model to maintain high performance even when 
faced with diverse and complex linguistic patterns found in 
code-mixed texts.

Dynamic sampling
By integrating SMOTE+ENN directly into the training loop, 
the model continuously rebalances the class distribution, 
addressing the class imbalance problem at its core. 
This ensures that the classifier does not become biased 
towards the majority class and improves the detection of 
underrepresented classes.

Enhanced classifier
The utilization of an enhanced XGBoost classifier, configured 
to leverage the deep features extracted by the autoencoder, 
provides a powerful means of discrimination between 
classes. The tuning of specific parameters like `scale_pos_
weight` further optimizes the model for imbalanced datasets.

Confusion Matrix Interpretation
The confusion matrix from the proposed model highlights 
its strengths and areas for improvement. High true positive 
rates for the “Positive” and “Negative” classes confirm the 
model’s effectiveness in correctly identifying clear sentiment 
expressions (Figure 1). However, the confusion between 
“Mixed Feelings” and “Unknown State” suggests that subtler 
sentiment distinctions within code-mixed contexts remain 
challenging. This observation points to the need for further 
refinement in distinguishing nuanced expressions, possibly 
through enhanced natural language processing techniques 
or deeper linguistic feature integration.

Limitations and Challenges
Despite its successes, the proposed methodology faces 
several challenges and limitations:

Complexity and computation
The integration of dynamic sampling within the deep learning 
model increases computational complexity, potentially 

Figure 1: Confusion matrix of the proposed model
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leading to longer training times. This complexity could limit 
the scalability of the model to extremely large datasets.

Dependency on parameter tuning
The performance of the model heavily relies on the optimal 
configuration of both the autoencoder and the XGBoost 
classifier. Finding the right balance of parameters requires 
extensive experimentation and fine-tuning, which can be 
resource-intensive.

Generalization across languages
While the model shows promising results on Tamil-English 
and Malayalam-English datasets, its effectiveness across 
other code-mixed language pairs remains to be thoroughly 
evaluated. Language-specific nuances might necessitate 
adjustments in the feature extraction and classification 
strategy.

Conclusion and Future Work
This research introduces a novel framework that adeptly 
combines an adaptive deep autoencoder with dynamic 
sampling and an enhanced XGBoost classifier, tailored 
specifically for the challenges posed by code-mixed and 
imbalanced datasets. Key contributions of this work include 
the development of a sophisticated model architecture that 
not only learns to adjust its feature extraction capabilities 
based on the data’s complexity but also addresses inherent 
class imbalances through integrated resampling techniques. 
The approach has been validated across multiple datasets, 
showing distinct improvements in accuracy, precision, recall, 
and F1-scores compared to other contemporary methods. 
This demonstrates the effectiveness of combining deep 
learning and enhanced machine learning techniques to 
improve sentiment analysis in multilingual contexts.

Future work could extend the application of the proposed 
model to additional code-mixed language pairs beyond 
Tamil-English and Malayalam-English. This expansion would 
test the model’s adaptability and effectiveness across a 
broader range of linguistic scenarios, potentially refining its 
capabilities to handle diverse linguistic nuances.
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