
Abstract
This study introduces a pioneering approach for enhancing classification accuracy on code-mixed and imbalanced data by integrating
an adaptive deep autoencoder with dynamic sampling techniques. Targeting the intricate challenges of sentiment analysis within
such datasets, this methodology employs an enhanced XGBoost classifier optimized to leverage the nuanced features extracted by the
autoencoder. The experimental evaluation across diverse datasets, predominantly involving Tamil-English code-mixed texts, demonstrates
a notable improvement in performance metrics: accuracy reached 84.2%, precision was recorded at 74.8%, recall stood at 78.4%, and
the F1-score achieved 76.6%. This marks an enhancement over existing methods by 0.5 to 1.5%, substantiating the model’s robust
capability in effectively handling linguistic diversity and class imbalances. The novelty of this research lies in the seamless integration
of dynamic sampling within the autoencoder’s training loop, significantly boosting the adaptability and effectiveness of the machine-
learning model in real-world applications.
Keywords: Sentiment analysis, Deep learning, Code-mixing, Autoencoder, Imbalance classification.

Enhancing classification accuracy on code-mixed and
imbalanced data using an adaptive deep autoencoder and
XGBoost
Ayesha Shakith*, L. Arockiam

RESEARCH ARTICLE

© The Scientific Temper. 2024
Received: 03/07/2024 Accepted: 13/08/2024 Published : 10/09/2024

Department of Computer Science, St. Joseph’s College
(Autonomous), Affiliated to Bharathidasan University, Trichy, India.
*Corresponding Author: Ayesha Shakith, Department of
Computer Science, St. Joseph’s College (Autonomous), Affiliated
to Bharathidasan University, Trichy, India., E-Mail: Ayeshasm1412@
gmail.com
How to cite this article: Shakith, A., Arockiam, L. (2024). Enhancing
classification accuracy on code-mixed and imbalanced data using
an adaptive deep autoencoder and XGBoost. The Scientific Temper,
15(3):2598-2608.
Doi: 10.58414/SCIENTIFICTEMPER.2024.15.3.27
Source of support: Nil

Conflict of interest: None.

The Scientific Temper (2024) Vol. 15 (3): 2598-2608 E-ISSN: 2231-6396, ISSN: 0976-8653

Doi: 10.58414/SCIENTIFICTEMPER.2024.15.3.27 https://scientifictemper.com/

Introduction
In the digital age, social media platforms have emerged
as prolific data generation sources, with millions of users
interacting daily through posts, comments, and messages
(Mindel, V, et al., 2024). This vast volume of data is not only
a reflection of current trends and public opinion but also
serves as a rich resource for various applications such as
market analysis, political forecasting, and customer service
improvements (Blazquez, D., et al., 2018). Particularly,
sentiment analysis leverages this data to gauge public
sentiment, enabling organizations to understand consumer

emotions and reactions towards products, services, or
events (Sykora M, et al.,2022). However, the utility of this
data is contingent upon the ability to accurately analyze
and interpret the content, which is often presented in
informal, abbreviated, or colloquial language, adding layers
of complexity to data processing (Abualigah L, et al., 2021).

One of the significant challenges in leveraging social
media data for sentiment analysis arises from the prevalence
of code-mixed text (Thara S, et al., 2022, Jamatia A, et al., 2020),
(Ahmad G. I., et al., 2022, Astuti L. W, et al., 2023). Code-mixing,
a common linguistic phenomenon in multilingual regions,
involves switching between two or more languages within a
sentence or discourse (Jamatia A, et al., 2020). This practice, while
reflective of cultural diversity and linguistic behavior, poses
unique challenges for computational analysis (Veeramani
H, et al., 2024). Traditional natural language processing tools
are often ill-equipped to handle the syntactic and semantic
irregularities introduced by code-mixing, leading to decreased
accuracy in sentiment classification (Perera A, et al., 2024)

Moreover, the datasets derived from social media are
typically imbalanced, with uneven distributions of sentiment
classes, further complicating the training and effectiveness
of predictive models (Huang J. Y. et al., 2022). Addressing
these challenges requires innovative approaches that
can robustly handle the complexities of code-mixed and
imbalanced datasets (Bölücü N, et al., 2024).

 Enhancing sentiment analysis accuracy on code-mixed data using deep auto encoder and XGBoost 2599

The motivation behind the development of advanced
sentiment analysis tools for code-mixed data stems from
the increasing globalization and digital communication
which fuse linguistic boundaries, creating a rich tapestry
of multicultural interactions online. As businesses and
governments seek to engage with and understand diverse
global audiences, the need to navigate and analyze
multilingual content effectively becomes critical. This is
particularly pertinent in regions with high bilingualism
where code-switching in digital communication is a norm
rather than an exception. The ability to accurately assess
sentiments from such complex datasets not only enhances
customer interaction and satisfaction but also aids in the
nuanced understanding of social dynamics and cultural
nuances that are often embedded in language use. This
involves innovating solutions that can leverage deep
learning to discern patterns and nuances in mixed-language
texts, thereby providing more accurate and contextually
relevant insights into public sentiment and opinion.

The contribution of this research is manifold, centering
around the innovative integration of dynamic sampling
techniques within an autoencoder’s training loop and
the strategic enhancement of the XGBoost algorithm to
optimize its performance for complex, code-mixed text
datasets.

Firstly, the incorporation of dynamic sampling,
specifically through synthetic minority over-sampling
technique - edited nearest neighbors (SMOTE-ENN), directly
within the training process of the autoencoder, represents
a novel approach. This integration allows the model to
continuously adjust to the imbalances in the dataset during
the training phase rather than as a preprocessing step. This
real-time adjustment ensures that the feature extraction is
not only adaptive but also sensitive to the minority classes,
significantly enhancing the robustness and accuracy of the
sentiment analysis.

Secondly, the enhancement of XGBoost in this framework
involves tailoring it to work seamlessly with the deep
features extracted by the autoencoder. This includes
tuning hyperparameters specifically for handling the
complexities of code-mixed data, such as adjusting the
‘scale_pos_weight’ to compensate for class imbalances
and optimizing the depth and number of trees to capture
nuanced linguistic patterns effectively. The enhanced
XGBoost model, therefore, is not merely a standalone
classifier but a sophisticated component that exploits the
rich, nuanced features provided by the autoencoder, leading
to improved classification outcomes.

This paper is systematically organized into several key
sections to ensure a thorough presentation of the research.
Following the introductory remarks that set the stage for
the significance and need for advanced sentiment analysis
tools, the paper delves into a comprehensive review of
related work, highlighting past efforts and current trends in

handling code-mixed text. The methodology section then
details the innovative approaches employed in this study,
including the architecture of the adaptive deep autoencoder,
the integration of dynamic sampling techniques, and the
enhancements made to the XGBoost classifier. Subsequent
sections provide a detailed description of the experimental
setup, including data preparation, model configuration, and
the parameters used, followed by an in-depth discussion of
the results, showcasing the effectiveness of the proposed
solutions through various performance metrics. The
paper concludes with a discussion that interprets these
results, outlines the limitations encountered, and proposes
directions for future research.

Related Work
Sentiment analysis of social media content presents a critical
area of research, providing valuable insights into public
opinion and behaviors. The prevalence of social media has
resulted in the generation of vast amounts of data daily,
characterized by diverse linguistic forms, including code-
mixed text where two or more languages are combined.
This phenomenon is particularly common in multilingual
societies, where users often switch between languages,
creating texts that are not strictly bound to the syntactic or
semantic rules of a single language.

The task of sentiment analysis in such code-mixed
environments introduces specific challenges, primarily
due to the linguistic complexity and the sparsity of labeled
data for training machine learning models (Saini J. R, et al.,
2023). Most traditional sentiment analysis tools are designed
for monolingual text and struggle with the irregularities
presented by code-mixing, such as unexpected grammatical
structures and mixed-language entities. Moreover, the data
collected from social media is often imbalanced, with the
overrepresentation of some sentiments over others, further
complicating the development of robust sentiment analysis
systems (Saini, J. R., et al., 2023).

Recent research has highlighted these challenges,
with studies such as the SemEval-2020 Task 9 exploring
sentiment analysis for code-mixed tweets in languages like
Hindi-English and Spanish-English, demonstrating varied
success across different language pairs (Rogers D, et al., 2021)
(Sengupta A, et al., 2021). These studies emphasize the need
for innovative solutions that can adapt to the intricacies
of code-mixed text while effectively managing dataset
imbalances. For example, efforts in developing datasets and
benchmarks specifically for code-mixed languages aim to
foster advancements in this field, as seen in the creation of
sentiment analysis corpora for languages like Malayalam-
English and Kannada-English (Astuti L. W, et al., 2023),
(Chakravarthi B. R, et al., 2022). These foundational works
set the stage for further exploration and development of
advanced analytical tools capable of handling the complex
dynamics of code-mixed sentiment analysis.

2600 Shakith and Arockiam The Scientific Temper. Vol. 15, No. 3

Further advancements in the field of code-mixed sentiment
analysis have been reported, reflecting the ongoing efforts
to refine methodologies and broaden the linguistic scope
of analysis (Shanmugavadivel, K, et al., 2022), (Nankani,
H, Dutta, et al., 2020), (Yusuf, A, et al., 2024). Notably, a
study conducted by Mohammad Tareq et al. presented
an innovative approach to enhancing cross-linguistic
contextual understanding through data augmentation
techniques (Dey, S, et al., 2024). underscores the importance
of developing tailored augmentation strategies to improve
the robustness of sentime nt analysis models in handling
code-mixed languages (Mohammad Tareq et al., 2023).

Another significant contribution is from the work of
(Kumaresan et al., 2023) where researchers developed
multitasking models that outperform traditional single-task
systems in sentiment and emotion recognition tasks. This
study demonstrates an F1 score improvement, highlighting
the efficiency of multitasking architectures in extracting and
processing complex emotional cues from code-mixed texts.

Proposed Methodology

Adaptive Deep Autoencoder with Dynamic Sampling
The core of our methodology is the adaptive deep autoencoder
designed to effectively handle the complexities of code-
mixed text data. The autoencoder architecture consists of
multiple layers, each aimed at decomposing the text data into
a more manageable and representative form. This includes
an input layer, several hidden layers, and a bottleneck layer
where the data is most compressed, facilitating the extraction
of salient features crucial for sentiment analysis. What sets our
autoencoder apart is the integration of dynamic sampling
techniques directly into its training loop. We employ SMOTE-
ENN within the training process to address class imbalance
by synthesizing new minority class samples and cleaning
overlapping samples, respectively. This integration allows
the autoencoder to continuously adjust to the diversity and
imbalance of the dataset, enhancing its ability to generalize
from training data to real-world applications.

Model design
The architecture of the adaptive deep autoencoder is
meticulously designed to tackle the nuances of code-mixed
text data, providing a powerful tool for feature extraction
that adapts to both the complexity and imbalance of the
dataset. Here’s a detailed breakdown of the autoencoder’s
architecture:

Input layer
The first layer of the autoencoder receives the input data,
which consists of high-dimensional vectors representing the
code-mixed text. These vectors are typically derived from
embedding techniques such as word embeddings or TF-IDF
vectorization, which transform the raw text into a numerical
format that neural networks can process.

Encoding layers
Following the input layer, several encoding layers are used
to progressively compress the data into a more compact
representation. Each encoding layer consists of a fully
connected (dense) neural network layer followed by a
non-linear activation function. Usually, rectified linear unit
(ReLU) introduces non-linearity into the model. These layers
are responsible for capturing and encoding the underlying
patterns and structures in the data, reducing dimensionality
while retaining crucial information.

Bottleneck layer
At the heart of the autoencoder is the bottleneck layer, where
the data representation is at its most compressed form. This
layer is crucial as it serves as the feature extraction phase of
the model, where the most salient and robust features of
the input data are retained. The bottleneck layer’s design is
pivotal in determining the quality and effectiveness of the
features extracted, influencing the overall performance of
the sentiment analysis.

Decoding layers
Symmetric to the encoding layers, the decoding layers aim
to reconstruct the input data from the compressed form.
These layers gradually expand the compressed data back to
its original dimensionality, using a similar structure of dense
layers and non-linear activation functions. The decoding
process is essential for the autoencoder to learn a lossy but
efficient representation of the input data, minimizing the
loss between the original and reconstructed data.

Output layer
The final layer of the autoencoder outputs the reconstructed
data, matching the dimensionality of the input layer. This
layer typically uses a sigmoid or linear activation function,
depending on the nature of the input data, to ensure that
the output values are in a suitable range.

Dynamic Sampling Integration
Uniquely, this autoencoder incorporates dynamic sampling
within its training loop, specifically using SMOTE-ENN. This
integration occurs between the encoding and decoding
phases, where the encoded features are dynamically
resampled to address class imbalances before being passed
to the decoding layers. By embedding SMOTE-ENN directly
into the autoencoder, the model continually adapts to the
evolving class distributions during training, enhancing
its sensitivity to minority classes and improving overall
classification performance.

Dynamic sampling integration
The integration of dynamic sampling techniques within
the training process of the adaptive deep autoencoder is a
critical component of our methodology, specifically tailored
to address the challenges of class imbalance in code-mixed

 Enhancing sentiment analysis accuracy on code-mixed data using deep auto encoder and XGBoost 2601

text data. The mechanism chosen for this integration is
SMOTE-ENN, which combines the over-sampling of the
minority classes with the under-sampling of the majority
classes to create a more balanced dataset.

SMOTE integration
SMOTE works by synthesizing new instances for minority
classes. This is achieved by first selecting a minority class
sample and then randomly choosing one of its k-nearest
neighbors also belonging to the minority class. A synthetic
sample is then generated by interpolating between the two
selected samples. Mathematically, the synthetic sample is
given by:

where is the feature vector of the original sample, is
the feature vector of the randomly selected neighbor, and
is a random number between 0 and 1. This process effectively
generates new data points along the line segments
connecting minority class samples in the feature space.

ENN integration
After generating synthetic samples via SMOTE, the ENN
algorithm is used to clean the data by removing any
generated synthetic samples that are too noisy. ENN works
by examining each sample in the dataset and removing it if
the majority of its k-nearest neighbors belong to a different
class. This can be formalized as:

where are the class labels of the k-nearest neighbors
of , y is the class label of is the indicator function.

Integration within Autoencoder Training
The integration of SMOTE-ENN into the autoencoder’s
training process is strategically placed between the
encoding and decoding stages. After passing the input
data through the encoding layers of the autoencoder to
produce a compressed representation, SMOTE is applied
to generate additional minority class samples, directly
addressing the class imbalance in this compressed feature
space. Subsequently, ENN is employed to remove any
outliers or noisy samples introduced by SMOTE. The cleaned,
balanced dataset is then passed through the decoding
layers to reconstruct the data, completing the autoencoder
training loop.

Optimization
The optimization of the adaptive deep autoencoder involves
carefully designed loss functions and strategies that are
crucial for effectively training the model to handle both
the reconstruction of input data and the challenges of class
imbalance. The optimization process aims to ensure that the
autoencoder learns meaningful and discriminative features,
which are vital for the subsequent classification tasks.

Loss functions
The overall loss function for the adaptive deep autoencoder is
a composite of two main components: the reconstruction loss
and the classification loss, enhanced by dynamic sampling.

Reconstruction loss
This is the primary loss function during the autoencoder
training and is typically defined as the mean squared error
(MSE) between the input vectors and their reconstructed
outputs. Mathematically, the reconstruction loss for a
batch of data can be expressed as:

where is the input vector, is the reconstructed
output, and n is the number of samples in the batch.

Classification loss
To incorporate the feedback from the classification phase
into the autoencoder training, a cross-entropy loss is often
used when the downstream task involves classification. For
a dataset that has been dynamically sampled to address
class imbalance, the classification loss for the predicted
outputs can be defined as:

where are the true labels and are the predicted
probabilities for the class labels, derived from the bottleneck
features of the autoencoder through the classifier.

Optimization strategy
The optimization strategy employed in training the adaptive
deep autoencoder involves the use of gradient descent
algorithms, specifically adaptive moment estimation (Adam),
which is well-suited for problems with large datasets and
parameters. Adam combines the advantages of two other
extensions of stochastic gradient descent, namely AdaGrad
and RMSProp, by computing adaptive learning rates for
each parameter. The update rules for the parameters using
Adam are given by:

where:
 are the parameters of the model,
 is the learning rate,

 are estimates of the first and second moments
of the gradients,

 is a small scalar added for numerical stability.

Algorithm 1: Train Adaptive Deep Autoencoder with
Dynamic Sampling
Inputs
• X: Input dataset containing code-mixed text data, split

into mini-batches
• Y: Corresponding labels for the input data, split into

mini-batches

2602 Shakith and Arockiam The Scientific Temper. Vol. 15, No. 3

• E: Number of training epochs.
• : Learning rate for parameter updates.
• : Regularization parameter to balance reconstruction

and classification loss.
• S: Sampling function applying SMOTE+ENN.

Outputs

• : Optimized parameters of the adaptive deep
autoencoder.

Procedure

Initialization
Initialize the autoencoder parameters (weights and biases
across all layers).

Epoch Loop:
for e = 1 to E do:
Shuffle the mini-batches X to ensure diverse training

samples in each epoch.
Batch Processing:
for each batch do:
Encode and Decode:
Pass batch through the autoencoder to obtain the

reconstructed batch :

Calculate Reconstruction Loss:
Compute the reconstruction loss using the mean

squared error (MSE) between the original and reconstructed
data:

Dynamic Sampling:
Apply the SMOTE+ENN technique to the encoded

representations and corresponding labels to adjust
the class distribution:

Backpropagation and Parameter Update:
Update the parameters by backpropagating the

combined loss where is the classification
loss derived from the preliminary classifier feedback (if any):

End Batch Loop
End Epoch Loop
Return:
Return the optimized parameters of the adaptive deep

autoencoder.

Feature Extraction
Following the encoding by the autoencoder, the next step
involves extracting and processing the features necessary
for classification. The bottleneck layer of the autoencoder
serves as the primary source for these features, offering a
condensed yet comprehensive representation of the input

data. This feature set is then prepared for classification, with
each feature vector encapsulating the essential linguistic
elements required for determining sentiment. This process
ensures that the classifier is provided with the most relevant
and informative features, stripped of unnecessary noise and
redundancy.

Feature Encoding
The feature encoding process in the adaptive deep
autoencoder is a critical step where the high-dimensional
input data is transformed into a compressed, lower-
dimensional representation. This encoding not only reduces
the dimensionality of the data but also extracts the most
salient features necessary for effective sentiment analysis,
particularly for code-mixed texts where linguistic patterns
are complex and varied.

Encoding mechanism
The autoencoder achieves this transformation through a
series of layers, each designed to progressively compress
the input data while retaining essential information. The
process begins at the input layer, where raw text data is
first converted into numerical format using techniques
like TF-IDF or word embeddings. These numerical
representations, typically high-dimensional sparse vectors,
serve as the input to the autoencoder.

Layer-wise transformation
Each layer in the encoding part of the autoencoder consists
of a linear transformation followed by a non-linear activation
function, which helps to capture non-linear relationships
in the data. The transformation at each layer l can be
mathematically represented as:

where:
 is the output from the previous layer (or the input

vector for l = 1),
 are the weights and biases for the layer l,

 is the non-linear activation function, typically ReLU
(Rectified Linear Unit) for intermediate layers.

Bottleneck feature representation
The bottleneck layer is where the data is the most
compressed and represents the core of the autoencoder’s
feature extraction capability. This layer’s output,
, serves as the encoded feature set. It is crucial because
it contains the condensed information of the input data,
stripped of redundancies yet rich enough to enable accurate
reconstruction and classification. The bottleneck features
are given by:

Optimization of encoding
The objective during the encoding process is to minimize
information loss despite reducing the dimensionality. This

 Enhancing sentiment analysis accuracy on code-mixed data using deep auto encoder and XGBoost 2603

is typically achieved by optimizing the reconstruction
loss as part of the overall training of the autoencoder. The
reconstruction loss ensures that the encoded data
can be effectively used to regenerate the input data in the
decoding phase, thus validating the retention of essential
information.

Data Handling
Once the feature encoding process is complete, the resulting
lower-dimensional encoded data must be carefully handled
and processed to make it suitable for the subsequent
classification tasks. This step is crucial in ensuring that
the features extracted by the autoencoder are effectively
utilized by the classifier, maintaining the integrity and
relevance of the data throughout the analysis pipeline. The
data handling process involves several key steps:

Normalization
Before feeding the encoded features into the classifier,
it’s essential to normalize the data to ensure that all
features contribute equally to the classification process.
Normalization typically involves scaling the feature vectors
so that they have a mean of zero and a standard deviation of
one. This step helps in preventing any feature with inherently
higher numeric ranges from dominating the decision-
making process of the classifier. The normalization can be
mathematically expressed as:

where is the i-th feature in the encoded feature
vector, is the mean of the i-th feature across all samples,
and is the standard deviation of the i-th feature.

Feature selection
Although the autoencoder is designed to compress and
retain the most informative features, further feature
selection can be performed to eliminate any residual noise
or redundant features. This step is particularly beneficial
when dealing with complex data structures or in scenarios
where computational efficiency is critical. Techniques such as
principal component analysis (PCA) or more targeted feature
selection methods can be employed to refine the feature set.

Data augmentation
In cases where the class distribution remains imbalanced
despite the initial handling by the autoencoder, data
augmentation strategies can be applied to the encoded
features to further balance the classes. This might involve
techniques such as oversampling the minority class
or undersampling the majority class, potentially using
synthesized samples based on the encoded features to
enhance the diversity and quantity of training data.

Partitioning
The processed data is then partitioned into training,
validation, and test sets. This partitioning is critical for

training the classifier effectively and for evaluating its
performance accurately. Typically, the data is split in a
stratified manner to ensure that each partition reflects the
overall distribution of classes, thereby providing a robust
basis for training and performance evaluation.

Integration into classifier
Finally, the prepared feature vectors are fed into the
classifier— in this case, an enhanced XGBoost model. At this
stage, the classifier utilizes the rich, processed features to
learn the underlying patterns and make accurate predictions
regarding the sentiment of each input sample.

Algorithm 2: Extract Features from Adaptive Deep
Autoencoder

Inputs
• X: Full input dataset containing code-mixed text data.

• Optimized parameters from the trained adaptive deep
autoencoder (obtained from Algorithm 1).

Outputs
D: Encoded feature set derived from the bottleneck layer of
the adaptive deep autoencoder.

Procedure
Feature Extraction:

Pass the entire dataset X through the encoder part of the
adaptive deep autoencoder to extract compressed features:

Here, represents the encoding function of the
deep autoencoder parameterized by , which maps the
high-dimensional input data X into a lower-dimensional
encoded feature set D.

Return
Return the encoded feature set D, which will be used for
further classification tasks.

Enhanced XGBoost Training and Prediction
To capitalize on the refined features extracted by the
autoencoder, we employ an enhanced version of the XGBoost
algorithm for the classification task. This enhancement
involves tuning XGBoost to optimize its performance
specifically for the code-mixed and imbalanced data
scenario. Adjustments include configuring the maximum
depth of trees to allow for complex decision boundaries
and fine-tuning the scale position weight to adequately
represent the minority classes in the data. The model is
trained on these features with a focus on maximizing
both accuracy and class balance, ensuring that each class,
regardless of its frequency in the dataset, is treated with
equal importance during the learning process. The final
prediction step involves converting the probabilities
generated by XGBoost into class labels, determining the
sentiment expressed in each input sample.

2604 Shakith and Arockiam The Scientific Temper. Vol. 15, No. 3

Model configuration
The enhanced XGBoost model is meticulously configured
to capitalize on the encoded features provided by the
adaptive deep autoencoder, ensuring optimal performance
in classifying sentiments from code-mixed text. XGBoost, an
advanced implementation of gradient boosting machines, is
renowned for its efficiency and effectiveness across a wide
range of applications.

Parameter tuning
Key parameters of the XGBoost model are tuned to handle
the specific challenges posed by the high-dimensional,
encoded feature space and the class imbalance inherent in
the dataset. These parameters include:
• max_depth: Controls the maximum depth of each tree,

which affects the model’s ability to model complex
patterns. Typically set based on the complexity of the data.

• (learning rate): Determines the step size at each
iteration while moving toward a minimum of a loss
function. A smaller eta makes the model more robust
to overfitting but may require more iterations.

• scale_pos_weight: Adjusts the balance of positive to
negative classes, which is crucial for datasets with
imbalanced classes.

• objective: Set to ‘binary:logistic’ for binary classification
tasks, which outputs probability scores.

The configuration can be mathematically expressed in
the initialization of the XGBoost classifier:

Training process
The training process of the XGBoost model involves several
steps designed to ensure that the model learns effectively
from the encoded features:
• Feature input: Encoded features are input into the

model, which are the output from the autoencoder’s
bottleneck layer.

• Model training: XGBoost applies an ensemble of decision
trees to the features. Each tree is built sequentially, with
each new tree learning to correct the errors made by
the previous trees. The update rule for the weights in
XGBoost during the t-th iteration can be expressed as:

where w are the weights, is the learning rate, is the
learning objective contribution from each tree, and
is the gradient of the loss function, which is computed
to minimize prediction errors.

• Cross-validation: To assess the model’s performance and
avoid overfitting, cross-validation is employed, splitting
the dataset into multiple subsets (folds) to validate the
model’s performance against unseen data.

Once trained, the XGBoost model is used to predict
sentiments on new, unseen data:
• Probability estimation: The model outputs a probability

score for each instance being positive, based on the
learned patterns. This is given by the logistic function
applied to the ensemble’s output:

where is the sum of predictions from all trees for
the input vector .

• Thresholding: To convert these probabilities into binary
class labels (positive or negative), a threshold is applied.
Typically, a threshold of 0.5 is used:

Algorithm 3: Train and Predict Using Enhanced
XGBoost

Inputs
• D: Encoded feature set derived from the adaptive deep

autoencoder (output of Algorithm 2).
• Y: Ground truth labels corresponding to D.

• : Learning rate for XGBoost.

• : Number of boosting rounds for XGBoost.

Outputs
: Predicted labels from the enhanced XGBoost classifier.

Procedure
• Initialize XGBoost parameters:

Define model parameters including and specific
parameters for handling imbalanced data such as
`scale_pos_weight .̀

• Train XGBoost
Create a DMatrix from D and Y for optimized performance:

Configure parameters for training, focusing on imbalance
and classification optimization:

Execute training:

• Prediction
Predict using the trained model on D:

• Post-processing (if applicable):

Convert probabilities to class labels based on a
threshold, typically 0.5 for binary classification:

• Return
Return , the predicted labels.

 Enhancing sentiment analysis accuracy on code-mixed data using deep auto encoder and XGBoost 2605

Experimental Setup
The experimental evaluation of the proposed ADADEX
was conducted using several publicly available code-
mixed datasets that comprise text data mixed primarily
between English and Tamil. These datasets were sourced
from diverse social media platforms to ensure a realistic
representation of code-mixed language usage in informal
communication. Each dataset was preprocessed to convert
raw text into a numerical format suitable for machine
learning. This preprocessing involved tokenization, removal
of stop words, normalization of text, and the use of TF-IDF
vectorization to transform the text into a feature vector.
Further preprocessing steps included encoding categorical
labels into a binary format to align with the sentiment
analysis task (positive and negative sentiments).

Model configuration and parameters
For the adaptive deep autoencoder, we configured the
model with three hidden layers, each followed by batch
normalization and dropout layers to prevent overfitting
(Table 1). The dimensionality of the bottleneck layer was
set based on the complexity of the dataset and preliminary
experiments that aimed to balance between compression

and information retention. The SMOTE+ENN algorithm was
integrated within the training loop to dynamically adjust the
class distribution of the mini-batches based on the detection
of imbalance at runtime.

The XGBoost model was enhanced by configuring its
hyperparameters to optimize performance on imbalanced
and complex feature sets. Parameters such as the number
of boosting rounds, max depth, learning rate, and `scale_
pos_weight` were fine-tuned using grid search and cross-
validation on a separate validation set to find the optimal
settings for each dataset.

Results
The proposed method, which integrates an adaptive deep
autoencoder with dynamic sampling techniques and an
enhanced XGBoost classifier, demonstrates significant
improvements in the classification of code-mixed and
imbalanced data. The experimental evaluation, conducted
across datasets involving Tamil-English (Ta-En) code-mixed
texts, shows promising results.

Table 2 depicts the overall results. The accuracy achieved
by the proposed system was 84.2%, a slight enhancement
over existing methods, indicating a robust capability in

Table 1: Model configuration and parameter settings

Model Component Parameter Description Value/Setting

Adaptive Deep
Autoencoder

Number of layers Total hidden layers including input and
bottleneck

3 layers

Activation function Function used in hidden layers ReLU

Dropout rate Fraction of the input units to drop 0.5

Batch normalization Method to stabilize and accelerate learning Applied after each hidden layer

Bottleneck dimension Size of the bottleneck layer Determined by dataset complexity

Learning rate (η) Step size at each iteration 0.01

Regularization (λ) Trade-off between reconstruction and
classification loss

0.1

Enhanced
XGBoost

Number of boosting rounds Number of boosting stages to run 100

Max depth Maximum depth of a tree 6

Learning rate (η) Step size shrinkage used in update 0.1

Scale pos weight Weight for class balancing Calculated based on class distribution

Objective Specify the learning task and the corresponding
learning objective

‘binary’

Table 2: Comparative results table

Metric ADADEX (%) (Balouchzahi, F(i).,
et al., 2021) (%)

(Kumaresan, C.,
et al., 2023) (%)

(Balouchzahi, F(ii)., et al., 2021, April)
(%)

Accuracy 84.2 NA NA NA

F1-Score 76.6 61.9 71.85 75

Precision 74.8 61.2 72.2 74

Recall 78.4 64.4 71.5 77

2606 Shakith and Arockiam The Scientific Temper. Vol. 15, No. 3

handling diverse linguistic features and imbalances within
the data. F1-Score reached 76.6%, reflecting a balanced
performance between precision and recall, particularly
beneficial in scenarios where class imbalance typically skews
performance metrics. Precision was recorded at 74.8%,
illustrating the model’s accuracy in identifying true positive
cases across classes. Recall stood at 78.4%, indicating the
model’s effectiveness in capturing a high number of actual
positive instances.

The CoSaD model previously achieved F1-scores as
discussed, showing the effectiveness of machine learning
classifiers with majority voting. The proposed ADADEX
model surpassed these results by effectively utilizing
advanced machine learning techniques that integrate
directly with deep learning-enhanced feature extraction.
ELSA and DravidianLangTech also presented competitive
models but generally focused on conventional machine
learning or basic deep learning approaches without the
sophisticated integration of dynamic sampling techniques
that the proposed model employs.

The confusion matrix derived from the proposed system
provides an insightful representation of model performance
across various classes such as positive, negative, mixed
feelings, unknown state, and other languages. Notably:
• The positive and negative classes show high true positive

rates, indicating strong model performance in these
categories.

• Mixed feelings and unknown state classes exhibit some
confusion, likely due to the inherent complexity and
subtlety of these sentiments in code-mixed contexts,
which poses challenges in accurate classification.

• The matrix also highlights areas where misclassifications
occur, primarily between closely related sentiment

classes, suggesting potential areas for further refinement
in feature engineering and class differentiation strategies.

Discussion

Interpretation of Results
The proposed method integrates an adaptive deep
autoencoder with dynamic sampling and an enhanced
XGBoost classifier to effectively tackle the challenges
associated with code-mixed and imbalanced data. The
improvements in classification accuracy, precision, and recall
over existing models can be attributed to several key factors:

Adaptive feature engineering
The deep autoencoder dynamically adjusts to the complexity
of the input data, extracting meaningful features that are
crucial for accurate classification. This adaptive capability
allows the model to maintain high performance even when
faced with diverse and complex linguistic patterns found in
code-mixed texts.

Dynamic sampling
By integrating SMOTE+ENN directly into the training loop,
the model continuously rebalances the class distribution,
addressing the class imbalance problem at its core.
This ensures that the classifier does not become biased
towards the majority class and improves the detection of
underrepresented classes.

Enhanced classifier
The utilization of an enhanced XGBoost classifier, configured
to leverage the deep features extracted by the autoencoder,
provides a powerful means of discrimination between
classes. The tuning of specific parameters like `scale_pos_
weight` further optimizes the model for imbalanced datasets.

Confusion Matrix Interpretation
The confusion matrix from the proposed model highlights
its strengths and areas for improvement. High true positive
rates for the “Positive” and “Negative” classes confirm the
model’s effectiveness in correctly identifying clear sentiment
expressions (Figure 1). However, the confusion between
“Mixed Feelings” and “Unknown State” suggests that subtler
sentiment distinctions within code-mixed contexts remain
challenging. This observation points to the need for further
refinement in distinguishing nuanced expressions, possibly
through enhanced natural language processing techniques
or deeper linguistic feature integration.

Limitations and Challenges
Despite its successes, the proposed methodology faces
several challenges and limitations:

Complexity and computation
The integration of dynamic sampling within the deep learning
model increases computational complexity, potentially

Figure 1: Confusion matrix of the proposed model

 Enhancing sentiment analysis accuracy on code-mixed data using deep auto encoder and XGBoost 2607

leading to longer training times. This complexity could limit
the scalability of the model to extremely large datasets.

Dependency on parameter tuning
The performance of the model heavily relies on the optimal
configuration of both the autoencoder and the XGBoost
classifier. Finding the right balance of parameters requires
extensive experimentation and fine-tuning, which can be
resource-intensive.

Generalization across languages
While the model shows promising results on Tamil-English
and Malayalam-English datasets, its effectiveness across
other code-mixed language pairs remains to be thoroughly
evaluated. Language-specific nuances might necessitate
adjustments in the feature extraction and classification
strategy.

Conclusion and Future Work
This research introduces a novel framework that adeptly
combines an adaptive deep autoencoder with dynamic
sampling and an enhanced XGBoost classifier, tailored
specifically for the challenges posed by code-mixed and
imbalanced datasets. Key contributions of this work include
the development of a sophisticated model architecture that
not only learns to adjust its feature extraction capabilities
based on the data’s complexity but also addresses inherent
class imbalances through integrated resampling techniques.
The approach has been validated across multiple datasets,
showing distinct improvements in accuracy, precision, recall,
and F1-scores compared to other contemporary methods.
This demonstrates the effectiveness of combining deep
learning and enhanced machine learning techniques to
improve sentiment analysis in multilingual contexts.

Future work could extend the application of the proposed
model to additional code-mixed language pairs beyond
Tamil-English and Malayalam-English. This expansion would
test the model’s adaptability and effectiveness across a
broader range of linguistic scenarios, potentially refining its
capabilities to handle diverse linguistic nuances.

Acknowledgment
The UGC provided funds for this study as part of the
“Savitribai Jyotirao Phule Single Girl Child Fellowship (SJSGC)
2022-23” initiative. The author thanks the UGC for its financial
support and the significant role it played in the successful
completion of this work. Opinions, research, and ideas made
by the author are solely those of the author and may not
necessarily represent those of the UGC.

References
Abualigah, L., Kareem, N. K., Omari, M., Elaziz, M. A., & Gandomi, A.

H. (2021). Survey on Twitter sentiment analysis: Architecture,
classifications, and challenges. Deep learning approaches for
spoken and natural language processing, 1-18.

Ahmad, G. I., Singla, J., Anis, A., Reshi, A. A., & Salameh, A. A. (2022).
Machine learning techniques for sentiment analysis of
code-mixed and switched Indian social media text corpus:
A comprehensive review. International Journal of Advanced
Computer Science and Applications, 13(2).

Astuti, L. W., & Sari, Y. (2023). Code-Mixed Sentiment Analysis using
Transformer for Twitter Social Media Data. International
Journal of Advanced Computer Science and Applications,
14(10).

Astuti, L. W., & Sari, Y. (2023). Code-Mixed Sentiment Analysis using
Transformer for Twitter Social Media Data. International
Journal of Advanced Computer Science and Applications,
14(10).

Balouchzahi, F., Aparna, B. K., & Shashirekha, H. L. (2021, April).
MUCS@ DravidianLangTech-EACL2021: COOLI-code-mixing
offensive language identification. In Proceedings of the
First Workshop on Speech and Language Technologies for
Dravidian Languages (pp. 323-329).

Balouchzahi, F., Shashirekha, H. L., & Sidorov, G. (2021). CoSaD-
Code-Mixed Sentiments Analysis for Dravidian Languages.
In FIRE (Working Notes) (pp. 887-898).

Blazquez, D., & Domenech, J. (2018). Big Data sources and methods
for social and economic analyses. Technological Forecasting
and Social Change, 130, 99-113. https://doi.org/10.1016/j.
techfore.2017.11.022

Bölücü, N., & Canbay, P. (2024). Syntax-aware Offensive Content
Detection in Low-resourced Code-mixed Languages with
Continual Pre-training. ACM Transactions on Asian and Low-
Resource Language Information Processing.

Chakravarthi, B. R., Priyadharshini, R., Muralidaran, V., Jose,
N., Suryawanshi, S., Sherly, E., & McCrae, J. P. (2022).
Dravidiancodemix: Sentiment analysis and offensive
language identification dataset for Dravidian languages in
code-mixed text. Language Resources and Evaluation, 56(3),
765-806. https://doi.org/10.1007/s10579-022-09503-3

Dey, S., Thakur, S., Kandwal, A., Kumar, R., Dasgupta, S., & Roy, P.
P. (2024). BharatBhasaNet-A unified framework to identify
Indian code mix Languages. IEEE Access.

Huang, J. Y., Lee, W. P., & Lee, K. D. (2022, March). Predicting adverse
drug reactions from social media posts: Data balance, feature
selection and deep learning. Healthcare, 10(4), 618. https://
doi.org/10.3390/healthcare10040618

Jamatia, A., Swamy, S. D., Gambäck, B., Das, A., & Debbarma, S.
(2020). Deep learning based sentiment analysis in a code-
mixed English-Hindi and English-Bengali social media
corpus. International Journal on Artificial Intelligence Tools,
29(05), 2050014. https://doi.org/10.1142/S0218213020500147

Kumaresan, C., & Thangaraju, P. (2023). ELSA: Ensemble
learning based sentiment analysis for diversified text.
Measurement: Sensors, 25, 100663. https://doi.org/10.1016/j.
measurement.2022.108212

Mindel, V., Overstreet, R. E., Sternberg, H., Mathiassen, L., & Phillips,
N. (2024). Digital activism to achieve meaningful institutional
change: A bricolage of crowdsourcing, social media, and
data analytics. Research Policy, 53(3), 104951. https://doi.
org/10.1016/j.respol.2023.104951

Nankani, H., Dutta, H., Shrivastava, H., Rama Krishna, P. V. N. S.,
Mahata, D., & Shah, R. R. (2020). Multilingual sentiment
analysis. In Deep learning-based approaches for sentiment
analysis (pp. 193-236).

2608 Shakith and Arockiam The Scientific Temper. Vol. 15, No. 3

Perera, A., & Caldera, A. (2024). Sentiment Analysis of Code-
Mixed Text: A Comprehensive Review. Journal of Universal
Computer Science (JUCS), 30(2).

Rogers, D., Preece, A., Innes, M., & Spasić, I. (2021). Real-time text
classification of user-generated content on social media:
Systematic review. IEEE Transactions on Computational
Social Systems, 9(4), 1154-1166. https://doi.org/10.1109/
TCSS.2021.3071037

Saini, J. R., & Roy, S. (2023). Preparation of Rich Lists of Research
Gaps in the Specific Sentiment Analysis Tasks of Code-mixed
Indian Languages. SN Computer Science, 5(1), 117. https://doi.
org/10.1007/s42979-023-00230-5

Sengupta, A., Bhattacharjee, S. K., Chakraborty, T., & Akhtar, M. S.
(2021). HIT: A hierarchically fused deep attention network for
robust code-mixed language representation. arXiv preprint
arXiv:2105.14600.

Shanmugavadivel, K., Sathishkumar, V. E., Raja, S., Lingaiah,
T. B., Neelakandan, S., & Subramanian, M. (2022). Deep
learning-based sentiment analysis and offensive language
identification on multilingual code-mixed data. Scientific
Reports, 12(1), 21557. https://doi.org/10.1038/s41598-022-
17253-3

Sykora, M., Elayan, S., Hodgkinson, I. R., Jackson, T. W., & West, A.

(2022). The power of emotions: Leveraging user-generated
content for customer experience management. Journal of
Business Research, 144, 997-1006. https://doi.org/10.1016/j.
jbusres.2022.03.018

Tareq, M. F. I., Islam, Md F., Deb, S., Rahman, S., & Mahmud, A. A.
(2023). Data-augmentation for Bangla-English code-mixed
sentiment analysis: Enhancing cross-linguistic contextual
understanding. IEEE Access, 11, 51657-51671. https://doi.
org/10.1109/ACCESS.2023.3154172

Thara, S., & Poornachandran, P. (2022). Social media text analytics
of Malayalam–English code-mixed using deep learning.
Journal of Big Data, 9(1), 45. https://doi.org/10.1186/s40537-
022-00526-w

Veeramani, H., Thapa, S., & Naseem, U. (2024, May). ML Initiative@
WILDRE7: Hybrid Approaches with Large Language Models
for Enhanced Sentiment Analysis in Code-Switched and
Code-Mixed Texts. In Proceedings of the 7th Workshop on
Indian Language Data: Resources and Evaluation (pp. 66-72).

Yusuf, A., Sarlan, A., Danyaro, K. U., Rahman, A. S. B., & Abdullahi,
M. (2024). Sentiment Analysis in Low-Resource Settings:
A Comprehensive Review of Approaches, Languages,
and Data Sources. IEEE Access. https://doi.org/10.1109/
ACCESS.2024.3055153

