Classification of glaucoma in retinal fundus images using integrated YOLO-V8 and deep CNN
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.26Keywords:
Convolutional Neural Networks, Deep Learning, Glaucoma Classification, YOLO-V8, Machine Learning, Image Processing, Image LocalizationDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
To propose a new system to identify glaucoma at an early stage with the help of deep learning-based AI method by utilizing Retinal Fundus Images (RFI). The method detects intrinsic key structures in the fundus images to predict retinal nerve layer thickness in order to improve the accuracy of glaucoma detection and classification. To learn complex and hierarchical image representations, the CNN model is used to identify the continuous value of retinal nerve layer thickness from RFI. The Binary Cross Entropy (BCE) loss function is used to perform multi-classification tasks to discover classes such as healthy eye, eye with glaucoma, and glaucoma suspect. In order to identify the local and global features in RFI, the YOLO-V8 object detection method is employed, which also helps to perform image localization, which includes image segmentation, deep optic disc analysis, and the extraction of ROIs. The main focus is given, especially for RNL thickness around OD regions and CDR measurement to perform glaucoma identification tasks. The PAPILA dataset is utilized with the ophthalmology records from 244 patients and includes 488 digital retinal fundus images, covering both left and right eyes for both male and female categories. The CNN model is trained on the PAPILA dataset with labeled RNL thickness values. The performance of CNN-BCE with YOLO-V8 is evaluated using MATLAB and compared against the prevailing approaches such as SVM, ADABOOST, and CNN-Softmax classifiers. The new model outperforms the existing methods with proven results of 98.88% accuracy rate, 0.9 dice-score, 97.74% and 98.03% sensitivity & specificity, 98.6% and 98.78% precision & recall, 98.06% f-score, and 0.92 true positive rates and 0.10 false positive rates under AUC-ROC. This clearly shows that the newly proposed CNN-BCE with YOLO-V8 detects and classifies glaucoma, which helps ophthalmologists perform potential screening and predict better treatments. Abstract
How to Cite
Downloads
Similar Articles
- Raja Selvaraj, Manikandasaran S. Sundari, EAM: Enhanced authentication method to ensure the authenticity and integrity of the data in VM migration to the cloud environment , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- D. Jayadurga, A. Chandrabose, Expanding the quantity of virtual machines utilized within an open-source cloud infrastructure , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Modenisha U, Ritha. W, Fueling Sustainability: A Cost-Benefit Analysis of RDF and Sewage Sludge as Alternative Fuels in Cement Production , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- Merla Agnes Mary, Britto Ramesh Kumar, Hybrid GAN with KNN - SMOTE Approach for Class-Imbalance in Non-Invasive Fetal ECG Monitoring , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- Priya Rani, Sonia, Garima Dalal, Pooja Vyas, Pooja, Mapping electric vehicle adoption paradigms: A thematic evolution post sustainable development goals implementation , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- K. Mohamed Arif Khan, A.R. Mohamed Shanavas, Optimizing IoT application deployment with fog - cloud paradigm: A resource-aware approach , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- S. Jerinrechal, I. Antonitte Vinoline, A Deterministic Inventory Model with Automation-Enabled Processes for Defective Item Management , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- S. Vaishali, M. Mary Mejrullo Merlin, The Study on Plithogenic Fuzzy Sets & its Properties , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Vijay Kumar, Priya Thapliyal, Rajesh Rayal, Baljeet Singh Saharan, Arun Kumar, Shweta Sahni, The Molecular Profiling and HCV RNA Quantification to Study the Distribution of Different HCV Genotypes in Accordance to Geographical Condition , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- Roopshree Banchode, Sai Pranathi Bhallamudi, S. P. Kanchana, Evaluation of the Quality of Commonly Used Edible Oils and The Effects of Frying , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
<< < 19 20 21 22 23 24 25 26 27 28 > >>
You may also start an advanced similarity search for this article.

