Classification of glaucoma in retinal fundus images using integrated YOLO-V8 and deep CNN
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.26Keywords:
Convolutional Neural Networks, Deep Learning, Glaucoma Classification, YOLO-V8, Machine Learning, Image Processing, Image LocalizationDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
To propose a new system to identify glaucoma at an early stage with the help of deep learning-based AI method by utilizing Retinal Fundus Images (RFI). The method detects intrinsic key structures in the fundus images to predict retinal nerve layer thickness in order to improve the accuracy of glaucoma detection and classification. To learn complex and hierarchical image representations, the CNN model is used to identify the continuous value of retinal nerve layer thickness from RFI. The Binary Cross Entropy (BCE) loss function is used to perform multi-classification tasks to discover classes such as healthy eye, eye with glaucoma, and glaucoma suspect. In order to identify the local and global features in RFI, the YOLO-V8 object detection method is employed, which also helps to perform image localization, which includes image segmentation, deep optic disc analysis, and the extraction of ROIs. The main focus is given, especially for RNL thickness around OD regions and CDR measurement to perform glaucoma identification tasks. The PAPILA dataset is utilized with the ophthalmology records from 244 patients and includes 488 digital retinal fundus images, covering both left and right eyes for both male and female categories. The CNN model is trained on the PAPILA dataset with labeled RNL thickness values. The performance of CNN-BCE with YOLO-V8 is evaluated using MATLAB and compared against the prevailing approaches such as SVM, ADABOOST, and CNN-Softmax classifiers. The new model outperforms the existing methods with proven results of 98.88% accuracy rate, 0.9 dice-score, 97.74% and 98.03% sensitivity & specificity, 98.6% and 98.78% precision & recall, 98.06% f-score, and 0.92 true positive rates and 0.10 false positive rates under AUC-ROC. This clearly shows that the newly proposed CNN-BCE with YOLO-V8 detects and classifies glaucoma, which helps ophthalmologists perform potential screening and predict better treatments. Abstract
How to Cite
Downloads
Similar Articles
- A. Rukmani, C. Jayanthi, Fuzzy optimization trust aware clustering approach for the detection of malicious node in the wireless sensor networks , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Rekha R., P. Meenakshi Sundaram, Enhanced malicious node identification in WSNs with directed acyclic graphs and RC4-based encryption , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Ravindra K. Kushwaha, Sonia Patel, Sarfaraz Ahmad, Indian education through a G20 lens-Ensuring continuity of sustainable development , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Deena Merit C K , Haridass M, Analysis of multiple sleeps and N-policy on a M/G/1/K user request queue in 5g networks base station , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- T. Malathi, T. Dheepak, Enhanced regression method for weather forecasting , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Ahmed Mustefa, Validating the dairy marketing performance of Mizan-Aman town, Bench-Sheko zone, Ethiopia , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- S. Munawara Banu, M. Mohamed Surputheen, M. Rajakumar, Enhanced AOMDV-based multipath routing approach for mobile ad-hoc network using ETX and ant colony optimization , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- Pravin P. P, J. Arunshankar, Development of digital twin for PMDC motor control loop , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Dimpal Khambhati, Chirag Patel, Analyzing cardiac physiology: ECG ensemble averaging and morphological features under treadmill-induced stress in LabVIEW , The Scientific Temper: Vol. 16 No. 07 (2025): The Scientific Temper
- Kumari Neha, Amrita ., Quantum programming: Working with IBM’S qiskit tool , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
<< < 18 19 20 21 22 23 24 25 26 27 > >>
You may also start an advanced similarity search for this article.

