Empowering Indian consumers to embrace electric vehicles through the unified theory of acceptance and use of technology
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.52Keywords:
Electric Vehicle, UTAUT Model, Consumer Intention, EVs Adoption Intention, Sustainable, Greenhouse gasesDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The Indian transport sector accounts for the highest share of greenhouse gas emissions. Traditional vehicles replacing with electric ones are India's only viable solution to reduce greenhouse gases. “Electric Vehicles (EVs)” might significantly lessen the negative effects of the transportation sector on the environment. In this research, we use a UTAUT model to assess consumer intent to embrace EVs as a means of transportation. “Data from 200 Indian respondents were collected using a purposive sampling strategy, and the results were analyzed using the Amos structural equation modelling technique”. According to the findings, there is a considerable impact of “Performance Expectancy,” “Effort Expectancy”, “Social Influence”, “Facilitating Conditions”, and “Price Value” on consumer adoption intentions for “electric vehicles”. The findings of this study will provide valuable insights for policymakers and manufacturers in developing effective marketing tactics that enhance “Customer Motivation, Awareness, and Value Generation” for “electric vehicles for sustainable development.Abstract
How to Cite
Downloads
Similar Articles
- Thilagavathi K, Thankamani K., P. Shunmugapriya, D. Prema, Navigating fake reviews in online marketing: Innovative strategies for authenticity and trust in the digital age , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Annalakshmi D., C. Jayanthi, An asymmetric key encryption and decryption model incorporating optimization techniques for enhanced security and efficiency , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Harjinderpal Singh Kalsi, To Monitor Real-time Temperature and Gas in an Underground Mine Wireless on an Android Mobile , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- A. Appu, How does brand equity influence the intent of e-bike users? Evidence from Chennai city , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Iftikhar A. Tayubi, Mayur D. Jakhete, Spoorthi B. Shetty, Ashish Verma, Mohit Tiwari, S. Kiruba, Sustainable healthcare AI-enhanced materials discovery and design for eco-friendly and biocompatible medical applications , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Isaac Asampana, Henry M. Akwetey, Ben Ocra, Jones Y. Nyame, Albert A. Akanferi, Hannah A. Tanye, Factors motivating the adoption of virtual learning environments in higher education. Is gender relevant? , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Pravin P. Adivarekar1, Amarnath Prabhakaran A, Sukhwinder Sharma, Divya P, Muniyandy Elangovan, Ravi Rastogi, Automated machine learning and neural architecture optimization , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Maria D. Roopa, Nimitha John, Bayesian Optimization Phase I Design of Experiment Models , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- UMASHANKAR SHUKLA, ANIL K. UPADHYAY, MATHEMATICAL MODEL FOR INFECTION AND REMOVAL IN POPULATION , The Scientific Temper: Vol. 10 No. 1&2 (2019): The Scientific Temper
- Temesgen A. Asfaw, Batch size impact on enset leaf disease detection , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Karan Berry, Shiv Kumar, Exploring the mediating role of gastronomic experience in tourist satisfaction: A multigroup analysis , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper