ETTG: Enhanced token and tag generation for authenticating users and deduplicating data stored in public cloud storage
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.18Keywords:
Cloud Storage, Data Deduplication, Token Generation, Cryptographic Techniques, Computation EfficiencyDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
As cloud storage services continue to grow in popularity, the need for secure and efficient data management has become paramount. Public cloud storage offers benefits such as cost efficiency, scalability, and accessibility, but it also presents significant challenges related to data security and storage optimization. To address these challenges, the paper proposes an Enhanced Token and Tag Generation (ETTG) technique designed to improve data deduplication in public cloud storage. ETTG utilizes advanced cryptographic methods to generate secure tokens and tags, ensuring robust, efficient deduplication processes. The comprehensive evaluation demonstrates that ETTG significantly reduces computation time compared to existing techniques, making it particularly suitable for data-intensive cloud environments. By minimizing redundant data and enhancing data security, ETTG not only optimizes storage utilization but also improves overall system performance. This paper details the design and implementation of ETTG, its evaluation against existing methods, and its potential impact on the efficiency and security of cloud storage services.Abstract
How to Cite
Downloads
Similar Articles
- Saumya Trivedi, Amit Sinha, Satyendra P. Singh, Ramya Singh, A study on factors influencing lending decisions for MSMEs by scheduled commercial banks in the CGTSME scheme , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Kurubara Amaresh, M. S. Ganachari, Revanasiddappa Devarinti , Enhancing participant understanding and ethical considerations in clinical trial biospecimen research: Insights from an oncology setting in India , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Jyoti Kataria, Himanshi Rawat, Himani Tomar, Naveen Gaurav, Arun Kumar, Azo Dyes Degradation Approaches and Challenges: An Overview , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Suresh L. Chitragar, Measurement of agricultural productivity and levels of development in the Malaprabha river basin, Karnataka, India , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Tewoderos Legesse, Bekelech Sharew, Evaluation of white seeded sesame (Sesamum indicium L.) genotypes on growth and yield performance in Menit Goldya Woreda of West Omo Zone, SWE , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- D. Padma Prabha, C. Victoria Priscilla, A combined framework based on LSTM autoencoder and XGBoost with adaptive threshold classification for credit card fraud detection , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Ravi Chaware, Sajid Anwar, Sunil Prayagi, Thermoelastic response of a finite thick annular disc with radiation-type conditions via time fractional-order effects , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Renuka Thapliyal, Can Shimla be fitted into the compact city model? , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Sawitri Devi, Raj Kumar, Unveiling scholarly insights: A bibliometric analysis of literature on gender bias at the workplace , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Naveen Kumar, Vikram Delu, Tarsem Nain, Anil Kumar, Pooja, Arbind Acharya, Exploring the therapeutic implications of nanoparticles for liquid tumors: A comprehensive review with special emphasis on green synthesis techniques in the context of Dalton’s lymphoma , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
<< < 30 31 32 33 34 35 36 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Olivia C. Gold, Jayasimman Lawrence, Ensemble of CatBoost and neural networks with hybrid feature selection for enhanced heart disease prediction , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper