
Abstract
As cloud storage services continue to grow in popularity, the need for secure and efficient data management has become paramount.
Public cloud storage offers benefits such as cost efficiency, scalability, and accessibility, but it also presents significant challenges related
to data security and storage optimization. To address these challenges, the paper proposes an enhanced token and tag generation
(ETTG) technique designed to improve data deduplication in public cloud storage. ETTG utilizes advanced cryptographic methods to
generate secure tokens and tags, ensuring robust, efficient deduplication processes. The comprehensive evaluation demonstrates that
ETTG significantly reduces computation time compared to existing techniques, making it particularly suitable for data-intensive cloud
environments. By minimizing redundant data and enhancing data security, ETTG not only optimizes storage utilization but also improves
overall system performance. This paper details the design and implementation of ETTG, its evaluation against existing methods, and
its potential impact on the efficiency and security of cloud storage services.
Keywords: Cloud storage, Data deduplication, User authentication, Token generation, Cryptographic techniques, Computation efficiency.

ETTG: Enhanced token and tag generation for authenticating
users and deduplicating data stored in public cloud storage
Priya Nandhagopal*, Jayasimman Lawrence

RESEARCH ARTICLE

© The Scientific Temper. 2024
Received: 26/07/2024 Accepted: 10/08/2024 Published : 10/09/2024

Department of Computer Science, Bishop Heber College, Affiliated
to Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.
*Corresponding Author: Priya Nandhagopal, Department
of Computer Science, Bishop Heber College, Affiliated to
Bharathidasan University, Tiruchirappalli, Tamil Nadu, India., E-Mail:
priya.phdbhc@gmail.com
How to cite this article: Nandhagopal, P., Lawrence, J. (2024).
ETTG: Enhanced token and tag generation for authenticating
users and deduplicating data stored in public cloud storage. The
Scientific Temper, 15(3):2523-2532.
Doi: 10.58414/SCIENTIFICTEMPER.2024.15.3.18
Source of support: Nil

Conflict of interest: None.

Introduction
As cloud storage services become increasingly popular,
the importance of secure and efficient data management
has never been greater. Public cloud storage provides
many benefits, such as cost efficiency, scalability, and
accessibility (P. Malathi et al., 2021). However, it also brings
significant challenges related to data security and storage
optimization. Ensuring the integrity and confidentiality of
user data is essential to maintaining trust in cloud services
while minimizing storage costs and requires effective data
deduplication techniques (X. Yu et al., 2023). Safeguarding
user data against unauthorized access relies heavily on
robust authentication mechanisms. While traditional

The Scientific Temper (2024) Vol. 15 (3): 2523-2532 E-ISSN: 2231-6396, ISSN: 0976-8653

Doi: 10.58414/SCIENTIFICTEMPER.2024.15.3.18 https://scientifictemper.com/

authentication methods offer some level of security, they
often fall short in the cloud environment, highlighting
the need for innovative solutions that enhance user
authentication without sacrificing ease of use (H. Lou et
al., 2022).

At the same time, data deduplication has become
a crucial technique for optimizing storage efficiency.
By removing duplicate copies of data, deduplication
reduces storage costs and improves resource utilization
(H. Yuan et al., 2022). However, implementing secure and
effective deduplication in public cloud storage presents
unique challenges, particularly in balancing security and
performance (Z. Li et al., 2022).

This paper presents an enhanced token and tag
generation (ETTG), a novel approach designed to tackle
the dual challenges of user authentication and data
deduplication in public cloud storage. ETTG uses advanced
cryptographic techniques to generate secure tokens and
tags, ensuring robust user authentication and secure
deduplication processes. The proposed approach not
only improves the security of user data but also optimizes
storage efficiency by securely identifying and eliminating
redundant data.

The paper starts by examining the current state of
data deduplication in cloud storage, highlighting existing
limitations and the need for improved solutions. The
paper then describes the design and implementation
of ETTG, detailing its key components and their roles in

2524 Nandhagopal and Lawrence The Scientific Temper. Vol. 15, No. 3

enhancing security and efficiency. Through comprehensive
experiments and analysis, demonstrate the effectiveness of
ETTG in providing secure and efficient cloud storage services.
By addressing the crucial issues of data deduplication, ETTG
represents a significant advancement in cloud storage
security and optimization. This paper aims to contribute
to the ongoing development of secure and efficient cloud
storage solutions, paving the way for more reliable and
cost-effective cloud services.

The deduplication system consists of a sequential
process to verify and deduplicate the data such as token
generation, token verification, convergent key generation,
convergent encryption, tag generation and tag verification
for deduplication. Among these sequential processes, token
and tag play a vital role in verifying and deduplicating the
data. The token is used to verify that the incoming user for
uploading data is authentic. The tag is used to deduplicate
the encrypted data. Moreover, the entire research has a
proposed framework with all the functionalities of a data
deduplication system. In this paper, the token generation
and tag generation functionality of the framework is
presented with relevant results and discussion.

Related Work
Many researchers have tried to address the challenges in the
cloud data deduplication. Some of them are discussed in this
section. In their study, Xuewei Ma et al. (2022) introduced
an innovative approach to server-side deduplication of
encrypted data in a hybrid cloud architecture. This design
involves a private cloud (Pri-CSP) that serves as the data
owner and is responsible for deduplication and dynamic
ownership management. Meanwhile, a public cloud
(Pub-CSP) is responsible for storage. By building an initial
uploader check mechanism, authors can ensure that only
the first uploader is responsible for encryption. Additionally,
adopting an access control strategy that verifies the legality
of data users before they download data reduces the
amount of communication overhead. Data consistency,
ownership revocation, data privacy, ownership verification,
and collusion resistance are considered security needs.
These criteria have been shown to be effective when
compared to previous methodologies.

In their study, Manogar E et al. (2022) suggested The
smart chunker (SC) technique improves the efficiency
of data deduplication in cloud storage by integrating
content defined chunking (CDC) with file-level chunking.
This work introduces the optimus prime chunking (OPC)
algorithm. The algorithm partitions the data based on prime
numbers and operates without utilizing a sliding window.
Implementing this approach will enhance the efficiency and
speed of data deduplication. The OPC technique reduces
chunk time by 17% by evenly spreading chunk variance
across cloud storage and maintaining a consistent average
chunk size. It attains a superior data processing rate of almost

3.3 times, surpassing previous algorithms used by the CDC.
The experiment in this study employed four CDC methods
to analyze different real-world multimedia datasets,
including virtual machine (VM) data. The study specifically
mentions the utilization of text, picture, video, and VM
data types for segmenting time variation and analyzing
differences in write time in CDC methods. The tests utilized
diverse datasets of varying file sizes and cumulative file
sizes to demonstrate different types of multimedia data.
Based on the experimental findings of the research, OPC
demonstrates superior performance compared to existing
CDC approaches in terms of total chunk count, average
chunk size, chunk time, and throughput.

In their study, Shynu P. G. et al. (2022) introduced an
innovative approach to constructing safe deduplication
systems in integrated cloud-fog environments. This was
achieved by utilizing convergent and modified elliptic curve
cryptography (MECC) algorithms. Proficiency in detecting
block-level data redundancy, resulting in efficient reduction
of data redundancy and optimal utilization of cloud storage
capacity. The technique is effective for several tasks, such as
adding new files, detecting data redundancy at the block
level, and efficiently minimizing redundancy. The proposed
approach is a highly effective option for data deduplication
in integrated cloud systems due to its superior performance
in terms of computational efficiency and security levels
compared to existing methods.

In their study, Yoon M et al. (2019) introduce a chunking
method that operates in constant time. This algorithm
divides each packet into a predetermined number of pieces,
independent of the size of the packet. Furthermore, it
provides a technique for deduplicating packets at the level of
individual data units by selecting the optimal combination of
fingerprinting, chunking, and hash table methods. In order
to preserve the algorithm’s complexity at a specific level, it
divides each packet into three segments. The continuous
time chunking algorithm was used to measure the
processing speed in Gbps and the deduplication ratio. This
algorithm enhanced the processing speed and conserved
CPU resources by eliminating data redundancy.

In their study, Nagappan Mageshkumar et al. (2023)
presented a method that guarantees end-to-end encryption
in order to encourage users to use cloud storage. This
method combines the Diffie-Hellman algorithm with
symmetrical external decision-making to protect and
promote the use of information. The proposed model
employs the Diffie-Hellman algorithm to create encryption
keys, implements block-level deduplication, and guarantees
the unpredictability of ciphertexts. This method reduces
the amount of computational resources required while
efficiently preventing both external and internal brute-
force attacks, hence enhancing the security of the data.
This proposed method of block-level deduplication aims
to reduce bandwidth utilization and storage requirements

 ETTG: for authenticating users and deduplicating data stored in public cloud storage 2525

while maintaining data security and privacy. The article
presents a framework for data deduplication-based
encryption that enhances the cryptographic system
for common data and ensures semantic protection for
controversial material. When utilizing this framework, a
robust hybrid method is employed to generate a secure
password that encrypts communications when exchanging
files over a public network. The research also discusses
the utilization of an elliptic curve for point generation and
secret key acquisition, as well as a secure spread spectrum
watermarking method for multimedia data. The observed
results demonstrate the effectiveness of the proposed
methodology in a real-time industrial case study, namely in
terms of reducing costs, improving operational efficiency,
ensuring data integrity, and enabling scalability.

The authors of the study are Yuan H. et al. (2022). This
study examines the impact of a stub-reserved attack on
the security of the lightweight Rekeying-aware encrypted
deduplication technique (REED). In order to address this issue,
the study proposes a secure data deduplication strategy that
utilizes randomly selected bits from the Bloom filter and the
convergent all-or-nothing transform (CAONT). The proposed
technique can effectively defend against the stub-reserved
attack, guarantee data privacy, and minimize computational
complexity by only necessitating the re-encryption of a tiny
segment of the package. The paper introduces a technique
for selecting sites based on a Bloom filter, which uses a bit
array to store the selected places. This technique aims to
reduce the amount of processing and storage required. It
obviates the necessity of arranging and storing 256 hash
values in ascending order. The article analyzes the security
vulnerabilities of the REED scheme and demonstrates its high
susceptibility to the stub-reserved attack. The effectiveness
and efficiency of the proposed strategy are proven by
security analysis and experimental results.

In their study, Jabin Prakash J et al. (2023) This article
suggested deduplication system architecture incorporates
the Ethereum blockchain network and the SpeedyCDC
algorithm to ensure the integrity of cloud data. It also analyses
the plan using actual datasets will help us understand how
well SpeedyCDC performs in comparison to other chunking
algorithms. The SpeedyCDC technique employs variable-
sized chunking, which is constrained by parameters like
minimum, maximum, average chunk size, and buffer size.
The hashing algorithm used is Blake2b, which relies on RAM.
The calculation of the chunking point is accomplished by
the utilization of the calculate CP() function, which employs
a double window structure and a RAM-based approach
utilizing both fixed-size and variable-size windows. The
SpeedyCDC chunking algorithm’s performance is evaluated
in comparison to other deduplication techniques within the
Ethereum blockchain context. The study does not explicitly
disclose the specific dataset utilized to analyze the proposed

deduplication technique. The study examines the use of
geospatial information systems (GIS) datasets to analyze
the efficiency of the SpeedyCDC algorithm compared to the
fastCDC Method. The SpeedyCDC algorithm, utilizing the
blake2b hashing approach and RAM, demonstrated superior
performance compared to the fastCDC technique when
analyzing GIS datasets. It achieved a high deduplication
ratio and throughput. The combination of the Blake2b
hashing technique and the SpeedyCDC algorithm resulted
in a reduction in duplicate copies and an improvement in
the integrity of cloud storage data. The study highlights the
importance of utilizing public blockchain networks with
decentralized ledgers, specifically the Ethereum blockchain,
to ensure the security and reliability of data stored in cloud
storage.

In their study, R. Vignesh et al. (2022) suggest an
innovative method for reducing the amount of bandwidth
and storage used when deleting duplicate data from cloud
storage. It also addresses the shortcomings of current
systems and offers improved security for data stored in cloud
storage. This work creates a solution for distributed and one-
server storage systems that address space efficiency and
data security. The paper enables the consistent generation
of encryption keys for chunk data, guaranteeing that the
same chunk is encrypted with the same ciphertext every
time. This method also guarantees the confidentiality of
the data by making sure that the keys cannot be extracted
from the encrypted chunks. To protect data, the system uses
encryption methods like advanced encryption standard
(AES) and convergent encryption (CE). Using a variety of key
generation algorithms, the paper describes the encoding
and decoding procedures for the suggested deduplication
system. The authors may have used their dataset or
simulated data for testing and analysis, though, as the paper
discusses the implementation specifics and evaluation
parameters of the suggested deduplication system. The
fact that the authors discuss evaluating the overhead by
varying factors like datafile size, amount of stored files, and
deduplication rate suggests that they may have employed
various data scenarios to gauge the system’s performance.
The suggested deduplication solution in cloud storage offers
improved security and addresses the limitations of current
systems by employing efficient and dependable multi-key
management. Table 1 shows a comparison table of the
literature summary based on key parameters.

This table clearly compares the key aspects of each
proposed technique, focusing on the core methodology,
security features, performance metrics, and datasets used.

Problem Definition
Cloud storage often involves the repeated allocation of
storage for the same data, which poses significant challenges
in terms of efficient storage management. The cloud
infrastructure typically permits the storage of duplicate

2526 Nandhagopal and Lawrence The Scientific Temper. Vol. 15, No. 3

Table 1: Literature comparison of similar methods

Authors Proposed technique Key features Security requirements Performance metrics Dataset

Xuewei Ma et
al. (2022)

Server-side
deduplication strategy
in hybrid cloud

Initial uploader check
mechanism, access control
technique, dynamic
ownership management

Data consistency and
privacy, revocation,
ownership verification,
collusion resistance

Lower
communication
overhead

Not specified

Manogar E et
al. (2022)

Smart Chunker (SC)
algorithm using Content
Defined Chunking (CDC)
and file-level chunking

Optimus Prime Chunking
(OPC) algorithm, no sliding
window

- Reduced chunk
time by 17%,
3.3x throughput
improvement

Various
multimedia
datasets,
including VM data

Shynu P. G et
al. (2020)

Deduplication in
integrated cloud-fog
environments using
Convergent and MECC
algorithms

Block-level data redundancy
identification, secure
deduplication

Enhanced
computational
efficiency, security
levels

Improved
redundancy
reduction, maximized
storage space

Not specified

MyungKeun
Yoon et al.
(2019)

Constant time chunking
algorithm

Packet level deduplication,
fingerprinting, chunking,
hash table

- Improved processing
speed, CPU resource
conservation

Not specified

Nagappan
Mageshkumar
et al. (2023)

End-to-end encryption
with Diffie-Hellman
algorithm

Block-level deduplication,
hybrid encryption, spread
spectrum watermarking

Data security, privacy,
brute-force attack
resistance

Cost savings,
operational
efficiency, data
integrity

Real-time
industrial case
study

Yuan H. et al.
(2022)

Secure deduplication
using randomly sampled
bits and CAONT

Bloom filter-based location
selection, minimized re-
encryption

Data privacy, minimal
computation overhead

Efficiency in stub-
reserved attack
prevention

Not specified

Jabin Prakash
J et al. (2023)

SpeedyCDC algorithm
with Ethereum
blockchain network

Variable-sized chunking,
Blake2b hashing, RAM-based
chunking, GIS datasets

Enhanced data
integrity

High deduplication
ratio, throughput
improvement

GIS datasets

R. Vignesh et
al. (2022)

Deduplication system
for distributed and one-
server storage

Consistent encryption key
generation, AES, CE

Enhanced data
security, multi-key
management

Efficient storage,
reduced bandwidth
usage

Intel Xeon E5530
server, various
data scenarios

data, leading to unnecessary and wasteful allocation of
storage resources. Traditional cryptographic systems are not
well-suited to maintain non-duplicate data in cloud storage
environments, as they do not inherently address the issue of
data redundancy. Furthermore, deduplication mechanisms,
which are designed to eliminate duplicate data, are vulnerable
to a range of attacks. These include poison attacks, brute force
attacks, and dictionary attacks. These vulnerabilities highlight
the need for more robust solutions that can ensure both data
security and storage efficiency in the cloud.

Methodology
At first, the user’s data is collected for deduplication
verification. The proposed technique initially validates the
entire file. If the entire document is not replicated, then it
is divided into small-sized blocks. Every block undergoes
verification for a duplicate in the cloud storage. If there is
no matching block for duplication, the blocks are encrypted
using convergent encryption and then transferred to the
cloud storage. The deduplication process preserves the
metadata of tables for every block saved in the cloud. If
the file-level verification determines that another user
duplicates the entire file, no additional verification of
individual blocks is performed.

Moreover, the present user is allocated logical connections
to every block of the files. Currently, the complete file is not
being uploaded to the cloud. The deduplication system in
the proposed framework creates a new entry for the current
user with identical details, which are inputted the first time
the same file content is encountered. Therefore, cloud
storage stores only one instance of the data. It minimizes the
unnecessary allocation of storage and conserves bandwidth.
Figure 1 shows the entire workflow of the deduplication
system. Among that, token and tag generation is the scope
of this paper.

ETTG System Procedures
The proposed ETTG comprises two procedures for token and
tag generation. The token is generated for plaintext data
being uploaded to cloud storage. The tag is generated for
the encrypted data to be ready to be uploaded to the cloud.
Both procedures are detailed in this section.

Token Generation
The procedure to generate a token from user data involves
several systematic steps to ensure the binary representation
of the input data is manipulated correctly to produce a
unique 32-bit result. First, the user data is converted into

 ETTG: for authenticating users and deduplicating data stored in public cloud storage 2527

binary format, with each character represented by its 8-bit
ASCII binary code. The total length of this binary sequence is
then adjusted to be a multiple of 32 bits by padding it with
zeros if necessary. This ensures that the binary block can be
evenly divided in subsequent steps.

The core part of the procedure involves repeatedly
dividing the binary block into two equal parts and
computing the XOR of corresponding bits from these two
halves. This process is repeated iteratively, continually
halving the sequence and applying the XOR operation until
the resulting sequence is exactly 32 bits in length. The final
32-bit binary sequence is then converted into its decimal
form and subsequently into an ASCII character code. This
ASCII character code serves as the token for the user’s data,
providing a unique identifier derived from the original input.

The steps involved in the proposed token production
are as follows.

Input user data
Take the user’s data as input.

Convert to binary
Convert each character in the user data to its binary
representation, ensuring each character is represented by
8 bits.

Ensure multiple of 32 bits
Calculate the total length of the binary sequence. If the
length is not a multiple of 32, pad the sequence with zeros
at the end until it meets this criterion.

Divide and XOR blocks
Divide the binary sequence into two equal parts and
compute the XOR of the corresponding bits of both blocks.

Repeat XOR process
Repeat step 4, continuously dividing and XORing the
resulting binary sequences until the total number of bits is
reduced to 32 (but not less than 32).

Convert to ASCII
Convert the f inal 32-bit binary sequence into its
corresponding ASCII character code.

Generate token
Use the resulting ASCII character as the token for the user’s
data.

Pseudo-code for Token Generation
Function generateToken(userData):

 // Step 1: Convert user data to binary
 binarySequence = convertToBinary(userData)
 // Step 2: Ensure the binary sequence is a multiple

of 32 bits
 binarySequence = padToMultipleOf32(binarySequence)
 // Step 3: Repeat the XOR process until the sequence

is 32 bits
 while length(binarySequence) > 32:
 // Split sequence into two blocks
 block1, block2 = splitIntoTwoBlocks(binarySequence)
 // XOR the two blocks
 binarySequence = xorBlocks(block1, block2)
 // Step 4: Convert the final 32-bit binary sequence to

an ASCII character code
 token = binaryToASCII(binarySequence)
 return token

Function convertToBinary(data):
 binarySequence = “”
 for char in data:
 decimalValue = ord(char) // Convert character to

decimal
 binaryValue = format(decimalValue, “08b”) // Convert

decimal to 8-bit binary
 binarySequence += binaryValue
 return binarySequence

Function padToMultipleOf32(binarySequence):
 while length(binarySequence) % 32 != 0:
 binarySequence += “0”
 return binarySequence

Function splitIntoTwoBlocks(sequence):
 midPoint = length(sequence) / 2

Figure 1: Deduplication system workflow

2528 Nandhagopal and Lawrence The Scientific Temper. Vol. 15, No. 3

 block1 = sequence[0:midPoint]
 block2 = sequence[midPoint:]
 return block1, block2

Function xorBlocks(block1, block2):
 xorResult = “”
 for i = 0 to length(block1) - 1:
 xorResult += block1[i] XOR block2[i]
 return xorResult

Function binaryToASCII(binarySegment):
 decimalValue = int(binarySegment, 2) // Convert

binary to decimal
 asciiChar = chr(decimalValue) // Convert decimal to

ASCII character
 return asciiChar
The pseudo-code starts by defining a function

generate token that takes user data as input. This data is
first converted into a binary sequence using the convert
to binary function. If necessary, the sequence is padded
to ensure its length is a multiple of 32 bits, as handled by
pad to multiple of 32. The main loop repeatedly splits the
sequence into two halves, computes their XOR using XOR
blocks, and updates the sequence until it is reduced to
32 bits. Finally, binary to ASCII converts the 32-bit binary
sequence to an ASCII character code, which is returned as
the token. This step-by-step approach ensures the process
is both systematic and repeatable, producing a consistent
token for any given input.

Illustration with Sample Data
The Token generation procedure is illustrated with sample
data.

Step 1: User data as input.
“I will meet you tomorrow.”

Step 2: Convert user data to binary
Convert each character to its ASCII decimal value, then
convert these decimal values to binary (8 bits each).

The full binary sequence is:
01001001 00100000 01110111 01101001 01101100 01101100

00100000 01101101 01100101 01100101 01110100 00100000
01111001 01101111 01110101 00100000 01110100 01101111
01101101 01101111 01110010 01110010 01101111 01110111

Step 3: Ensure multiple of 32 bits
The current length of the binary sequence is 192 bits. No pad
with zeros to make it a multiple of 32 bits. Actual Binaries
are taken to the next step.

Step 4: Divide into equal blocks and find XOR
First XOR:

Split into two 96-bit blocks:
Block 1:
01001001 00100000 01110111 01101001 01101100 01101100

00100000 01101101 01100101 01100101 01110100 00100000

Block 2:
01111001 01101111 01110101 00100000 01110100 01101111
01101101 01101111 01110010 01110010 01101111 01110111

XOR each bit:
Result: 00110000 01001111 00000010 01001001

00011000 00000011 01001101 00000010 00010111 00010111
00011011 01010111

Step 5: Repeat the XOR Process until the Sequence is 32 Bits
Second XOR:

Split into two 48-bit blocks:
Block 1: 00110000 01001111 00000010 01001001

00011000 00000011
Block 2: 01001101 00000010 00010111 00010111 00011011

01010111
XOR each bit:
Result: 01111101 01001101 00010101 01011110 00000011

01010100
The result is 48-bit; consider the first 32-bit for the token.
32-bit: 01111101 01001101 00010101 01011110

Step 6: Convert the final 32-bit binary sequence to ASCII
The final 32-bit binary sequence is: 01111101 01001101
00010101 01011110

Binary: 01111101 125 -> }
Binary: 01001101 77 -> M
Binary: 00010101 21 -> §
Binary: 01011110 94 -> ^

Step 7: Generated Token
The token for the user’s data “I will meet you tomorrow” is
‘}M§ ’̂.

Tag Generation
The tag generation procedure for user data involves
converting the input into its binary representation,
ensuring the binary sequence’s length is a multiple of
32 bits by padding if necessary, and then iteratively
performing XOR operations to reduce the sequence to 32
bits. Initially, the binary sequence is split into two equal
parts, and corresponding bits from each part are XORed
together. This process of splitting and XORing continues
until the binary sequence is exactly 32 bits long. The final
32-bit binary sequence is then converted into its decimal
equivalent and subsequently into an ASCII character code,
which serves as the unique token for the user’s data. The
pseudo-code encapsulates these steps, ensuring a clear,
systematic approach to converting user data into a binary
token, ultimately generating a unique identifier based on
the original input.

Steps involved in the generation of tag:

Input encrypted data
Begin with the encrypted data as the input for tag
generation.

 ETTG: for authenticating users and deduplicating data stored in public cloud storage 2529

Convert to binary
Convert all encrypted codes to their corresponding decimal
values, and then convert these decimal values to binary
format.

Determine bit count
Calculate the total number of bits in the binary sequence.

Simplify bit sequence
For any sequence of two consecutive identical bits (either
0s or 1s), consider it as a single bit.

Split sequence
Divide the total bit sequence into two equal blocks.

XOR segments
Extract 8-bit segments from each block and compute the
XOR of corresponding segments from the two blocks.

Repeat XOR process
Continue steps 5 and 6, repeatedly splitting and XORing
the resulting sequences until the bit sequence is reduced
to 64 bits.

Convert to ASCII
Convert the final 8-bit segments to their ASCII character
codes.

Generate tag
The final character code obtained in step 8 serves as the tag
for the encrypted data.

These steps outline the process for tag generation
clearly and concisely. Let me know if you need any further
assistance!

The pseudo-code for the tag generation process from
encrypted data:

Pseudo-code for Tag Generation
Function generateTag(encryptedData):

 // Step 1: Convert encrypted data to binary
 binarySequence = convertToBinary(encryptedData)
 // Step 2: Simplify bit sequence by removing

consecutive identical bits
 simplifiedSequence = remove Consecutive Identical

Bits (binary Sequence)
 // Step 3: Repeat the process until the sequence is 64

bits long
 while length(simplifiedSequence) > 64:
 // Split sequence into two blocks
 block1, block2 = splitIntoTwoBlocks(simplifiedSequence)
 // XOR 8-bit segments of the blocks
 xorSequence = []
 for i = 0 to length(block1) / 8 - 1:
 segment1 = get8BitSegment(block1, i)
 segment2 = get8BitSegment(block2, i)
 xorSegment = xor(segment1, segment2)
 xorSequence.append(xorSegment)

 // Combine XOR segments back into a single
sequence

 simplifiedSequence = combineSegments(xorSequence)
 // Step 4: Convert final 8-bit segments to ASCII character

codes
 tag = “”
 for i = 0 to length(simplifiedSequence) / 8 - 1:
 segment = get8BitSegment(simplifiedSequence, i)
 asciiChar = binaryToASCII(segment)
 tag += asciiChar
 return tag

Function convertToBinary(data):
 binarySequence = “”
 for code in data:
 decimalValue = convertToDecimal(code)
 binaryValue = decimalToBinary(decimalValue)
 binarySequence += binaryValue
 return binarySequence

Function removeConsecutiveIdenticalBits(binarySequence):
 simplifiedSequence = “”
 previousBit = “”
 for bit in binarySequence:
 if bit != previousBit:
 simplifiedSequence += bit
 previousBit = bit
 return simplifiedSequence

Function splitIntoTwoBlocks(sequence):
 midPoint = length(sequence) / 2
 block1 = sequence[0:midPoint]
 block2 = sequence[midPoint:length(sequence)]
 return block1, block2

Function get8BitSegment(block, index):
 start = index * 8
 end = start + 8
 return block[start:end]

Function xor(segment1, segment2):
 xorResult = “”
 for i = 0 to length(segment1) - 1:
 xorResult += segment1[i] XOR segment2[i]
 return xorResult

Function combineSegments(segments):
 combinedSequence = “”
 for segment in segments:
 combinedSequence += segment
 return combinedSequence

Function binaryToASCII(binarySegment):
 decimalValue = binaryToDecimal(binarySegment)
 asciiChar = char(decimalValue)
 return asciiChar

Function convertToDecimal(code):
 // Convert encrypted code to decimal
 return decimalValue

2530 Nandhagopal and Lawrence The Scientific Temper. Vol. 15, No. 3

Function decimalToBinary(decimalValue):
 // Convert decimal value to binary
 return binaryValue

Function binaryToDecimal(binarySegment):
 // Convert binary segment to decimal
 return decimalValue

Function char(decimalValue):
 // Convert decimal value to ASCII character
 return asciiChar
This pseudo-code outlines the steps and provides

functions to handle the individual tasks involved in
generating the tag from encrypted data.

Illustration with Sample Data
The example encrypted text “d45g^m@*jhDeK>{G” to
generate a 64-bit tag. Here are the detailed steps:

Step 1: Convert encrypted data to binary
First, convert each character to its ASCII decimal value, then
convert these decimal values to binary.

01100100 00110100 00110101 01100111 01011110 01101101
01000000 00101010 01101010 01101000 01000100 01100101
01001011 00111110 01111011 01000111

Step 2: Simplify bit sequence by removing consecutive iden-
tical bits
0110100101001010110110101010110101000101010110010101
011010101001010101101011

Step 3: Repeat the process until the sequence is 64 bits long
Now, let’s repeat the XOR process until it comes to the 64-bit
sequence:

Initial sequence:
011010010100101011011010101011010100010101011001

0101011010101001010101101011
Splitting the sequence:
Block 1: 01101001010010101101101010101101010001010

10110010101011010101001
Block 2: 0101010101101011
Since the sequence is already 64 bits long, it doesn’t

need to split and XOR further.

Step 4: Convert final 8-bit segments to ASCII character codes
Split the final 64-bit sequence into 8-bit segments and
convert each to its ASCII character code:

01101001 -> i
01001010 -> J
11011010 -> Ú
10101101 ->
01000101 -> E
01011001 -> Y
01010110 -> V
01010101 -> U

Step 5: Generate the final tag
Concatenate the ASCII characters to form the final tag:
Final tag: “iJÚ EYVU”

This tag represents the 64-bit tag generated from the
encrypted text “d45g^m@*jhDeK>{G”.

Results and Discussion
The proposed ETTG technique has been evaluated by
comparing its efficiency with similar existing techniques
(Jabin Prakash J et al. 2023, R. Vignesh et al. 2022). The
primary metric for evaluation was the computation time
required for each technique to process data. Both a
tabular presentation and a graphical representation of the
results have been provided to facilitate a comprehensive
comparison.

The evaluation focused on computation time, as this
is a critical factor in the efficiency of data deduplication
processes in cloud computing environments. Faster
computation times translate to quicker data processing and,
consequently, more efficient data storage and retrieval. To
calculate and compare the computation times for different
data sizes (1, 2, 3, 4, and 5KB) using the proposed ETTG and
existing techniques (Jabin Prakash J et al. 2023, R. Vignesh
et al. 2022), it can assume hypothetical computation times
based on the pattern observed in the provided data.

Tables 2, 3 and 4 summarize the computation times of
the proposed ETTG and the techniques (Jabin Prakash J et
al. 2023, R. Vignesh et al. 2022) with respect to token, tag
and total computation time of token and tag, respectively.
Table 2 shows the computation time taken to generate the
token for different sizes of data.

Table 2 shows the computation times for generating
the token by the proposed ETTG and existing techniques
for data sizes ranging from 1 to 5 KB. As observed, the
proposed ETTG consistently exhibits lower computation

Table 2: Computation times for generating token

Data Size (KB) Proposed ETTG
(ms)

Jabin Prakash J
et al. (2023) (ms)

R. Vignesh et
al. (2022) (ms)

1 18 25 24

2 37 51 49

3 54 76 71

4 74 102 95

5 90 125 121

Table 3: Computation time for generating tag

Data Size (KB) Proposed ETTG
(ms)

Jabin Prakash J
et al. (2023) (ms)

R. Vignesh et
al. (2022) (ms)

1 28 36 27

2 53 71 53

3 81 104 80

4 109 141 111

5 135 176 138

 ETTG: for authenticating users and deduplicating data stored in public cloud storage 2531

times across all data sizes, highlighting its efficiency. Table 3
shows the computation time taken to generate a Tag from
the encrypted data.

Table 3 shows the computation times for generating the
tag by the proposed ETTG and existing techniques for data
sizes ranging from 1 to 5 KB. As observed, the proposed
ETTG consistently exhibits lower computation times across
all data sizes, highlighting its efficiency. Table 4 shows the
computation time taken to generate the token and tag from
the user’s data.

The results clearly indicate that the proposed ETTG
technique outperforms the existing techniques in terms
of computation time. The ETTG method demonstrated a
computation time of 46 ms, which is significantly lower than
the 60 ms and 51 ms recorded for the techniques (Jabin
Prakash J et al. 2023, R. Vignesh et al. 2023). This reduction
in computation time highlights the efficiency of the ETTG
method.

The ETTG technique’s superior performance can be
attributed to its optimized token generation process,
which ensures rapid processing while maintaining accuracy
and reliability. This makes ETTG particularly suitable for
integration into the data deduplication processes in cloud
computing, where large volumes of data must be processed
swiftly to ensure seamless user experiences and efficient
resource utilization.

The ability of ETTG to minimize computation time
is crucial for data deduplication in cloud computing,
as it enables the quick identification and elimination of
redundant data. This not only saves storage space but also
improves data management efficiency, leading to cost
savings and enhanced system performance. By reducing
the time required to process and deduplicate data, the ETTG
technique ensures that cloud computing resources are used
more effectively, supporting faster data access and reduced
latency for end-users.

The results from the computation times clearly indicate
that the proposed ETTG method is more efficient across all
tested data sizes. The linear increase in computation time
with data size is expected; however, the rate of increase for
the proposed ETTG remains lower compared to the other
two techniques. This consistent performance advantage

suggests that the proposed ETTG method is better suited
for handling larger datasets, making it an excellent choice
for applications in cloud computing where efficiency and
speed are paramount. The ability of the ETTG technique to
handle larger datasets more efficiently can lead to significant
improvements in overall system performance, particularly
in data-intensive environments such as cloud storage and
data deduplication processes.

Conclusion
The enhanced token and tag generation (ETTG) technique
proposed in this paper addresses the critical challenges
of user authentication and data deduplication in public
cloud storage. Through comprehensive evaluation, ETTG
has demonstrated superior efficiency in computation
time compared to existing methods. The results show
that ETTG consistently achieves lower computation times
across various data sizes, highlighting its optimized token
generation process. This efficiency not only ensures rapid
processing but also enhances the reliability and accuracy
of data deduplication. The ETTG represents a significant
advancement in cloud storage security and optimization,
providing a robust solution for secure and efficient data
deduplication. Its integration into cloud computing
environments can lead to substantial improvements in
overall system performance, making cloud services more
reliable and cost-effective. The findings of this paper
contribute to the ongoing development of secure and
efficient cloud storage solutions, paving the way for more
advanced and scalable cloud services in the future.

Acknowledgment
We sincerely acknowledge the Head of the department,
Dr. J. James Manoharan, and Dr. J. Princy Merlin, Principal
of the institution, for providing the facility to complete this
paper Successfully.

References
H. Lou and F. Farnoud. (2022). Data Deduplication With Random

Substitutions. IEEE Transactions on Information Theory,
68(10), 6941-6963. https://doi.org/10.1109/TIT.2022.3176778

H. Yuan, X. Chen, J. Li, T. Jiang, J. Wang and R. H. Deng. (2022). Secure
Cloud Data Deduplication with Efficient Re-Encryption. IEEE
Transactions on Services Computing, 15(1), 442-456. https://
doi.org/10.1109/TSC.2019.2948007

H. Yuan, X. Chen, J. Li, T. Jiang, J. Wang and R. H. Deng. (2022). Secure
Cloud Data Deduplication with Efficient Re-Encryption. IEEE
Transactions on Services Computing, 15(1), 442-456. https://
doi.org/10.1109/TSC.2019.2948007

Jabin Prakash J, Ramesh K, Saravanan K, Lakshmi Prabha G.
(2023). Blockchain-based data deduplication using novel
content-defined chunking algorithm in cloud environment.
International Journal of Network Management, 33(6), 1-24.
https://doi.org/10.1002/nem.2249

Manogar E, Abirami S. (2022). A smart hybrid content-defined
chunking algorithm for data deduplication in cloud storage.

Table 4: Computation times taken for generating both token
 and tag

Data Size (KB) Proposed ETTG
(ms)

Jabin Prakash J
et al. (2023) (ms)

R. Vignesh et al.
(2022) (ms)

1 46 60 51

2 91 120 101

3 137 180 152

4 181 240 202

5 224 300 255

2532 Nandhagopal and Lawrence The Scientific Temper. Vol. 15, No. 3

PREPRINT, Research Square, 1-29. https://doi.org/10.21203/
rs.3.rs-376128/v1

MyungKeun Yoon, A constant-time chunking algorithm for packet-
level deduplication. (2019). ICT Express, 5(2), 131-135. https://
doi.org/10.1016/j.icte.2018.05.005

Nagappan Mageshkumar, J. Swapna, A. Pandiaraj, R. Rajakumar,
Moez Krichen, Vinayakumar Ravi. (2023). Hybrid cloud
storage system with enhanced multilayer cryptosystem for
secure deduplication in the cloud. International Journal of
Intelligent Networks, 4, 301-309. https://doi.org/10.1016/j.
ijin.2023.11.001

P. Malathi and S. Suganthidevi. (2021). Comparative Study and
Secure Data Deduplication techniques for Cloud Computing
storage. IEEE International Conference on Innovative
Computing, Intelligent Communication and Smart Electrical
Systems, Chennai, India, 1-5. https://doi.org/10.1109/
ICSES52305.2021.9633960

Shynu P. G., Nadesh R. K., Varun G. Menon, Venu P., Mahdi Abbasi,
Mohammad R. Khosravi. (2020). A secure data deduplication
system for integrated cloud-edge networks. Journal of Cloud

Computing: Advances, Systems and Applications, 9(61), 1-12.
https://doi.org/10.1186/s13677-020-00214-6

Vignesh, R. Preethi, J. (2022). Secure Data Deduplication System
with Efficient and Reliable Multi-Key Management in Cloud
Storage. Journal of Internet Technology, 23(4), 811-825.
https://doi.org/10.53106/160792642022072304016

X. Yu, H. Bai, Z. Yan and R. Zhang. (2023). VeriDedup: A Verifiable
Cloud Data Deduplication Scheme With Integrity and
Duplication Proof. IEEE Transactions on Dependable and
Secure Computing, 20(1), 680-694. https://doi.org/10.1109/
TDSC.2022.3141521

Xuewei Ma, Wenyuan Yang, Yuesheng Zhu, Zhiqiang Bai. (2022).
A Secure and Efficient Data Deduplication Scheme with
Dynamic Ownership Management in Cloud Computing.
arxiv:2208.09030v3[cs.CR], 1-8. https://doi.org/10.48550/
arXiv.2208.09030

Z. Li, G. Chen and Y. Deng. (2022). Duplicacy: A New Generation of
Cloud Backup Tool Based on Lock-Free Deduplication. IEEE
Transactions on Cloud Computing, 10(4), 2508-2520. https://
doi.org/10.1109/TCC.2020.3047403

