Mapping the landscape of political advertising research: A comprehensive bibliometric analysis
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.4.42Keywords:
Bibliometric Analysis, Systematic Literature Review, Data Visualization, Political Advertising, Co-Citation AnalysisDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This study employs bibliometric analysis to provide a comprehensive overview of the research landscape in political advertising from 1972 to 2022. Drawing on a dataset of 668 papers from the Scopus database, the analysis utilizes the VOSviewer program to examine various facets of political advertising literature. Key findings include the dominance of developed countries, particularly the United States, in terms of research output and citations. Co-authorship patterns reveal extensive collaboration networks, with the United States serving as a central hub. The most productive authors and journals are identified, shedding light on influential contributors and publication outlets in the field. Furthermore, analysis of keyword occurrences highlights prevalent themes and topics, such as political communication, social media, and campaign strategies. Practical implications of the study include informing researchers, policymakers, and practitioners about the current state of political advertising research and identifying avenues for future inquiry. However, the study also acknowledges limitations such as database exclusivity, language bias, and methodological constraints inherent in bibliometric analysis. Overall, this study contributes to a deeper understanding of political advertising scholarship, emphasizing its global significance and potential for shaping political discourse and practice.Abstract
How to Cite
Downloads
Similar Articles
- N. Ruba, A. S. A. Khadir, Session password Blum–Goldwasser cryptography based user three layer authentication for secured financial transaction , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Amit Maru, Dhaval Vyas, Hybrid deep learning approach for pre-flood and post-flood classification of remote sensed data , The Scientific Temper: Vol. 16 No. Spl-1 (2025): The Scientific Temper
- Bommaiah Boya, Premara Devaraju, Integrating clinical and ECG data for heart disease prediction: A hybrid deep learning approach based on two modalities with particle swarm optimization , The Scientific Temper: Vol. 16 No. 05 (2025): The Scientific Temper
- K. Sreenivasulu, Sampath S, Arepalli Gopi, Deepak Kartikey, S. Bharathidasan, Neelam Labhade Kumar, Advancing device and network security for enhanced privacy , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Priya Tiwari, Bharat Kasar, Vibhu Tripathi, Decoding Investor’s behavior in tax saving mutual fund: A multi-item scale for evaluating investors’ category , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Boni D. Joshi, The evolution and impact of indian english poetry: A cultural and literary analysis , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Bratati Dey, Poonam Sharma, A comprehensive review of urban growth studies and predictions using the Sleuth model , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- M. Deepika, I. Antonitte Vinoline, The Impact of ERP Integration and Preservation Technology on Profit Optimization in Inventory Systems with Shortages and Deterioration , The Scientific Temper: Vol. 16 No. 09 (2025): The Scientific Temper
- Ashoke D. Maliki, Taiwo A. Muritala, Saji George, Frank A. Ogedengbe, Impact of project financiers’ strategies on de-risking infrastructural projects: A conceptual review , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Sanjeev Kumar, Saurabh Charaya, Rachna Mehta, Multi-Metric Evaluation Framework for Machine Learning-Based Load Prediction in e-Governance Systems , The Scientific Temper: Vol. 17 No. 01 (2026): The Scientific Temper
<< < 7 8 9 10 11 12 13 14 15 16 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Mohit, Rishi Chaudhry, Exploring the landscape of brand extensions: A bibliometric analysis of scholarly trends and insights , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper

