BTEDD: Block-level tokens for efficient data deduplication in public cloud infrastructures
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.16Keywords:
Cloud storage, Data Deduplication Techniques, Block-level deduplication, Cloud Data Security, Data Storage ManagementDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In today's digital era, the exponential growth of data necessitates effective storage and management solutions. The cloud has vast storage possibilities to store huge amounts of data. Public access to the cloud leads to duplicate copies of data stored in the storage. Maintaining a single copy of data in the cloud is most important for efficient data storage management. This paper introduces a groundbreaking strategy for improving the efficacy of cloud storage through innovative data deduplication techniques at the block levels. The block-level duplication verification efficiently identifies the duplicate data in the storage. It helps to protect the duplicate storage in the cloud data storage infrastructure. The block-level deduplication technique uses variable-length blocks based on the duplicate content of the block. Initially, A file is divided into a number of blocks with a size of 5kb. According to the proposed method, If any block is partially matched with a block already stored in the cloud, then that block is further divided into smaller blocks based on the matching percentage. The smaller blocks help to deduplicate the data more effectively. The work is implemented in a live cloud setting with a C# application hosted on MyASP.NET. The proposed methodology's effectiveness is validated against existing deduplication techniques. The results reveal a marked improvement in storage utilization and data management, affirming the potential of the approach to revolutionize cloud storage efficiency.Abstract
How to Cite
Downloads
Similar Articles
- V Vijayaraj, M. Balamurugan, Monisha Oberai, Machine learning approaches to identify the data types in big data environment: An overview , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- V. Umadevi, S. Ranganathan, IoT based energy aware local approximated MapReduce fuzzy clustering for smart healthcare data transmission , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- V. Babydeepa, K. Sindhu, Piecewise adaptive weighted smoothing-based multivariate rosenthal correlative target projection for lung and uterus cancer prediction with big data , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Amudavalli L, K. Muthuramalingam, Integrated energy-efficient routing and secure data management for location-aware wireless sensor networks with PFO leveraged improved fuzzy unequal clustering algorithm (IFUC) , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Shaik Khaleel Ahamed, Neerav Nishant, Ayyakkannu Selvaraj, Nisarg Gandhewar, Srithar A, K.K.Baseer, Investigating privacy-preserving machine learning for healthcare data sharing through federated learning , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Manpreet Kaur, Shweta Mishra, A smart grid data privacy-preserving aggregation approach with authentication , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Anita M, Shakila S, Stochastic kernelized discriminant extreme learning machine classifier for big data predictive analytics , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- N. Ruba, A. S. A. Khadir, Session password Blum–Goldwasser cryptography based user three layer authentication for secured financial transaction , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- V Babydeepa, K. Sindhu, A hybrid feature selection and generative adversarial network for lung and uterus cancer prediction with big data , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Annalakshmi D., C. Jayanthi, An asymmetric key encryption and decryption model incorporating optimization techniques for enhanced security and efficiency , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Sabeerath K, Manikandasaran S. Sundaram, ESPoW: Efficient and secured proof of ownership method to enable authentic deduplicated data access in public cloud storage , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper