BTEDD: Block-level tokens for efficient data deduplication in public cloud infrastructures
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.3.16Keywords:
Cloud storage, Data Deduplication Techniques, Block-level deduplication, Cloud Data Security, Data Storage ManagementDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
In today's digital era, the exponential growth of data necessitates effective storage and management solutions. The cloud has vast storage possibilities to store huge amounts of data. Public access to the cloud leads to duplicate copies of data stored in the storage. Maintaining a single copy of data in the cloud is most important for efficient data storage management. This paper introduces a groundbreaking strategy for improving the efficacy of cloud storage through innovative data deduplication techniques at the block levels. The block-level duplication verification efficiently identifies the duplicate data in the storage. It helps to protect the duplicate storage in the cloud data storage infrastructure. The block-level deduplication technique uses variable-length blocks based on the duplicate content of the block. Initially, A file is divided into a number of blocks with a size of 5kb. According to the proposed method, If any block is partially matched with a block already stored in the cloud, then that block is further divided into smaller blocks based on the matching percentage. The smaller blocks help to deduplicate the data more effectively. The work is implemented in a live cloud setting with a C# application hosted on MyASP.NET. The proposed methodology's effectiveness is validated against existing deduplication techniques. The results reveal a marked improvement in storage utilization and data management, affirming the potential of the approach to revolutionize cloud storage efficiency.Abstract
How to Cite
Downloads
Similar Articles
- Annalakshmi D, C. Jayanthi, A secured routing algorithm for cluster-based networks, integrating trust-aware authentication mechanisms for energy-efficient and efficient data delivery , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- V. Selvi, T. S. Poornappriya, R. Balasubramani, Cloud computing research productivity and collaboration: A scientometric perspective , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- K. Gokulkannan, M. Parthiban, Jayanthi S, Manoj Kumar T, Cost effective cloud-based data storage scheme with enhanced privacy preserving principles , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- R. Prabhu, P. Archana, S. Anusooya, P. Anuradha, Improved Steganography for IoT Network Node Data Security Promoting Secure Data Transmission using Generative Adversarial Networks , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Archana G, Vijayalakshmi V, Improving classification precision for medical decision systems through big data analytics application , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Jayalakshmi K., M. Prabakaran, The role of big data in transforming human resource analytics: A literature review , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Raghvendra, Tulika Saxena, Saurabh Verma, Rashi Saxena, Smita Dron, Shilpi Singh, Combination of financial literacy, strategic marketing and effective human resource for sustainable household wealth development , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Lakshmi Priya, Anil Vasoya, C. Boopathi, Muthukumar Marappan, Evaluating dynamics, security, and performance metrics for smart manufacturing , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Dileep Pulugu, Shaik K. Ahamed, Senthil Vadivu, Nisarg Gandhewar, U D Prasan, S. Koteswari, Empowering healthcare with NLP-driven deep learning unveiling biomedical materials through text mining , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Mohamed Azharudheen A, Vijayalakshmi V, Improvement of data analysis and protection using novel privacy-preserving methods for big data application , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Sabeerath K, Manikandasaran S. Sundaram, ESPoW: Efficient and secured proof of ownership method to enable authentic deduplicated data access in public cloud storage , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper