Study and optimization of process parameters for deformation machining stretching mode
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.2.31Keywords:
Deformation machining, Surface roughness, Hardness, Grey Relation Analysis, Analysis of Variance (ANOVA)Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Monolithic thin-structure parts with intricate geometric designs are employed in a variety of aeronautical, medical, marine, and automotive applications, which include the moldlines of the fuselage, turbine blades, impellers, avionic shelves, irregular fins, prostheses, bone and joint support, and skull plates. The deformation machining process is the solution to this challenging and difficult-to-manufacture high-quality components with intricate narrow geometries at competitive prices. The aim of the present study is to assess the effect of process parameters of the deformation machining process wherein a thin, floor-like structure is created by milling and is then formed using a single-point incremental forming tool. Investigation involves the design and development of tooling required for the process followed by feasibility checking of the process. To examine the impact of different process parameters on the process response, the experiments were carried out using the design of experiments. The findings of this study indicate that different process parameters, including spindle speed, tool diameter, incremental step depth, and feed rate, have a substantial impact on the process response, like thickness, surface finish, and hardness. Uneven and non-uniform surface patterns during SEM indicate that it is needed to examine the impact of process parameters. This research involves the feasibility study of a new hybrid technique of deformation machining. Conventionally, a metallic structure is produced by joining various components through welding or by fastening. These methods require additional expenditure on equipment, storage, floor space, human resources, etc., with higher lead time. Joining increases weight and reduces fatigue strength. The creation of monolithic structures can eliminate all these disadvantages.Abstract
How to Cite
Downloads
Similar Articles
- K. Fathima, A. R. Mohamed Shanavas, TALEX: Transformer-Attention-Led EXplainable Feature Selection for Sentiment Classification , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- Raghavan Santhanam, P Venugopal, Sreoshi Dasgupta, R. S. Kumar, Saravanan M.P, Ravindra A. Kayande, Analysis of organizational culture and e-commerce adoption in the context of top management perspectives , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Suprabha Amit Kshatriya, Jaymin K Bhalani, Early detection of fire and smoke using motion estimation algorithms utilizing machine learning , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Vibhu Tripathi, Saifur Farooqi, Social media usage: implications for empathy, passive aggressive behavior, and impulsiveness , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Ayesha Shakith, L. Arockiam, EMSMOTE: Ensemble multiclass synthetic minority oversampling technique to improve accuracy of multilingual sentiment analysis on imbalance data , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Raghvendra, Tulika Saxena, Saurabh Verma, Rashi Saxena, Smita Dron, Shilpi Singh, Combination of financial literacy, strategic marketing and effective human resource for sustainable household wealth development , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Alok Sharma, Roumi Deb, Sanjay Kumar Manjul , Cultural continuity and change through ceramic ethnoarchaeology: A comparative analysis of Rang Mahal and contemporary pottery in Nohar, Hanumangarh district, Rajasthan , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Binay Kumar Mahto, Rakesh Patel, Rajendra Bapna, Ajay Kumar Shukla, Development and Standardization of a Poly Herbal Formulation , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- M. Jayakandan, A. Chandrabose, An ensemble-based approach for sentiment analysis of covid-19 Twitter data using machine learning and deep learning techniques , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- SHILPENDRA KOUR, REKHA KHANDAL, RASHMI TRIPATHI, EVALUATION OF LEAF EXTRACTS OF DIFFERENT MEDICINAL PLANTS FOR POTENTIAL ANTIBACTERIAL ACTIVITY AND PRELIMINARY PHYTOCHEMICAL ANALYSIS , The Scientific Temper: Vol. 3 No. 1&2 (2012): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.

