Design Design, structural, and electrical conduction behavior of Zr-modified BaTiO3-BiFeO3 perovskite ceramics
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.2.12Keywords:
Solid state ceramic route, Complex perovskites, XRD, DC ConductivityDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This study employs the solid-state reaction method to synthesize [(Ba0.7 Bi0.3) (Ti0.7-y Zry) Fe0.3] O3 (y = 0.0, 0.2, 0.3, 0.4, 0.6) for investigating their structural and DC conduction behavior. XRD analysis suggests a perovskite phase for all the compositions having a cubic crystal structure. Initially, average crystallite size increases for y ≥ 0.3 and then decreases for y = 0.4. The temperature-dependent DC electrical conductivity demonstrated the semiconducting nature for all the compositions. The introduction of Zr modifies the material’s structure and electrical properties evident in the observed variations in crystallite size and conductivity behavior. These findings contribute to the understanding of Zr-modified [(Ba0.7 Bi0.3) (Ti0.7-y Zry) Fe0.3] O3 ceramics, shedding light on their potential applications in semiconductor devices and solid-state electronics. The investigation underscores the importance of tailoring composition parameters for fine-tuning material characteristics, opening avenues for optimized utilization in electronic and energy-related technologiesAbstract
How to Cite
Downloads
Similar Articles
- Arvind K Shukla, Balaji V, Dharani R, M Ananthi, R Padmavathy, Romala V. Srinivas, Precision agriculture predictive modeling and sensor analysis for enhanced crop monitoring , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Anvar Mavlonov , Saidamir Saidov , Jakhongir Mirsultanov, Rano Boboeva , The Features of bone destruction in rabbits with experimental metabolic syndrome , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Shaik Chanbasha, N. Jayakumar, N. Bupesh Kumar, A self-regulating optimization algorithm for locating and sizing a local power generation source for a radial structured distribution system in deregulated environment , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Pankaj Kumar, Ambrish Pandey, Rajendrakumar Anayath, Comparative study of print quality attributes on bio-based biodegradable plastic using flexography and gravure printing process , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Mahima Srivastava, Chemical facets of environment-friendly corrosion impediment of low-carbon steel in aqueous solutions of inorganic mineral acid , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Sonal R. Vasant, Synthesis and characterization of pure and magnesium ion doped CPPD nanoparticles , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Showkat Ahmad Shah, Netsanet Gizaw, Impact of selected macroeconomic variables on economic growth in Ethiopia: A time series analysis , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Sohini Bhattacharyya, Ajay Kumar Harit, Manoj Singh, Urvashi Sharma, Chaitramayee Pradhan, Occurrence of Antibiotic Resistance in Lotic Ecosystems , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- KIRAN DIMRI, N.K. SHARMA, SEED GERMINATION OF ANACYCLUS PYRETHRUMD.C. IN EXPERIMENTAL FIELD , The Scientific Temper: Vol. 10 No. 1&2 (2019): The Scientific Temper
- A. Basheer Ahamed, M. Mohamed Surputheen, M. Rajakumar, Quantitative transfer learning- based students sports interest prediction using deep spectral multi-perceptron neural network , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
<< < 1 2 3 4 5 6 7 8 9 10 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Anil Kumar, Aditya Kumar, Synthesis, spectral characterization and antimicrobial effect of Cu(II) complexes of schiff Base Ligand, N-(3,4- dimethoxybenzylidene)-3-aminopyridine (DMBAP) Derived from 3,4-dimethoxybenzaldehyde and 3-aminopyridine , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Naveen Kumar, Renu, Suresh Kumar Gahlawat, Anil Kumar, Vikram Delu, Pooja, Shekhar Anand, Suresh Chandra Singh, Arbind Acharya, Nanoparticles as illuminating allies: Advancing diagnostic frontiers in COVID-19- A review , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Rattan Singh, Sushil Gupta, Anil Kumar, EFFECTS OF SOURCES, INFORMATION, COMMUNICATION AND KNOWLEDGE IN HIV/AIDS AWARENESS PROGRAMME IN PUNJAB. , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper