RWHO: A hybrid of CNN architecture and optimization algorithm to predict basal cell carcinoma skin cancer in dermoscopic images
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.2.25Keywords:
Deep learning, Convolution neural network, basal cell carcinoma, skin cancer, feature extraction, optimization algorithmDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Basal cell carcinoma (BCC) is a type of skin cancer that initiates from the epithelial cells of our skin. Compared to other forms of cancer, BCC infrequently spreads to other parts of the body. It has a risk of local attack and demolition of surrounding tissues. Typically, BCC shows as one or numerous small, glowing nodules exhibiting central depressions. These knots are commonly found on the sun-exposed skin areas of older adults. Many dermatoscopic methods are available for diagnosing and predicting such kinds of skin cancers. But, medical professionals find it difficult to diagnose at some kind of images at the early stages. An automated methodology to predict such types of skin lesions would be better for such a diagnosis. In the present work, a new computer-assisted algorithm called RESNET50-WHO (RWHO) has been introduced to predict and diagnose BCC skin cancer. The method uses a combination of deep learning algorithm RESNET 50 and a metaheuristic algorithm, called wildebeest herd optimization (WHO) Algorithm to do prediction. The initial features from the images are extracted using RESNET 50. The output is given to the WHO algorithm to extract the beneficial features to reduce the time complexity. The method is tested using the PH2 dataset. The results obtained using the proposed algorithm is compared with the state-of-art optimization algorithms and evaluated. The conclusive findings specify that the proposed algorithm beats the comparative methods, yielding superior resultsAbstract
How to Cite
Downloads
Similar Articles
- Bajeesh Balakrishnan, Swetha A. Parivara, E-HRM: Learning approaches, applications and the role of artificial intelligence , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Raja S, Nagarajan L., Hybridization of bio-inspired algorithms with machine learning models for predicting the risk of type 2 diabetes mellitus , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Abhishek Dwivedi, Shekhar Verma, SCNN Based Classification Technique for the Face Spoof Detection Using Deep Learning Concept , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- G. Deena, K. Raja, M. Azhagiri, W.A. Breen, S. Prema, Application of support vector classifier for mango leaf disease classification , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Rekha R., P. Meenakshi Sundaram, Trust aware clustering approach for the detection of malicious nodes in the WSN , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Ashutosh Pathak, Review- Significant Advancements in Electrochemical Detection of Neuron-Specific Enolase , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- Rekha R., P. Meenakshi Sundaram, Enhanced malicious node identification in WSNs with directed acyclic graphs and RC4-based encryption , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Jayalakshmi K., M. Prabakaran, The role of big data in transforming human resource analytics: A literature review , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Ayesha Shakith, L. Arockiam, Enhancing classification accuracy on code-mixed and imbalanced data using an adaptive deep autoencoder and XGBoost , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- B. Kalpana, P. Krishnamoorthy, S. Kanageswari, Anitha J. Albert, Machine learning approaches for predicting species interactions in dynamic ecosystems , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 7 8 9 10 11 12 13 14 15 16 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- R. Gomathi, Balaji V, Sanjay R. Pawar, Ayesha Siddiqua, M. Dhanalakshmi, Ravi Rastogi, Ensuring ethical integrity and bias reduction in machine learning models , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper