Three‑phase‑lags thermoelastic infinite medium model with a spherical cavity via memory-dependent derivatives
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.1.21Keywords:
Thermoelastic, three-phase-lags, memory-dependent derivative, fractional calculusDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The present study examines the impact of a three-phase lags thermoelastic infinite medium with a spherical cavity subjected to thermal shock in the temperature of its internal boundary. In this study, a new time-fractional three-phase-lag thermoelasticity model with memory-dependent derivatives is utilized. From the suggested model, we recover certain previous thermoelasticity models as special instances. Laplace transform techniques are used. The solution to the problem in the transformed domain is obtained by using the Gaver-Stehfest algorithm. The validity of the proposed theory is evaluated through a comparison with the existing literature. The numerical computations are conducted and represented graphically. The numerical values of field variables show significant differences for a specific material, highlighting important points related to the prediction of the new model. The article’s physical viewpoints could be helpful in the development of novel materials.Abstract
How to Cite
Downloads
Similar Articles
- Neeru Garg, B.R. Jaipal, Harshvardhan Singh, Impacts of anthropogenic activities on the behavior of Indian fox (Vulpes bengalensis) in the Thar desert , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- M. Jayakandan, A. Chandrabose, An ensemble-based approach for sentiment analysis of covid-19 Twitter data using machine learning and deep learning techniques , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Pallavi M. Shimpi, Nitin N. Pise, Comparative Analysis of Machine Learning Algorithms for Malware Detection in Android Ecosystems , The Scientific Temper: Vol. 16 No. 11 (2025): The Scientific Temper
- R. Sridevi, V. S. J. Prakash, Load aware active low energy adaptive clustering hierarchy for IoT-WSN , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Ayalew Ali, Baylign Abebe , The link between CEO’s financial literacy and technological innovation of cooperative unions , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- S ChandraPrabha, S. Kantha Lakshmi, P. Sivaraaj, Data analysis and machine learning-based modeling for real-time production , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Pritee Rajaram Ray, Bijal Zaveri, Inclusive education for children with learning difficulties in Mauritius: An analytical study among select stakeholders , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Krutuja S. Gadgil, Prabodh Khampariya, Shashikant M. Bakre, Investigation of power quality problems and harmonic exclusion in the power system using frequency estimation techniques , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- V Babydeepa, K. Sindhu, A hybrid feature selection and generative adversarial network for lung and uterus cancer prediction with big data , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- S. Mohamed Iliyas, M. Mohamed Surputheen, A.R. Mohamed Shanavas, Enhanced Block Chain Financial Transaction Security Using Chain Link Smart Agreement based Secure Elliptic Curve Cryptography , The Scientific Temper: Vol. 16 No. 10 (2025): The Scientific Temper
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Ravi Chaware, Sajid Anwar, Sunil Prayagi, Thermoelastic response of a finite thick annular disc with radiation-type conditions via time fractional-order effects , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Shahala Sheikh, Lalsingh Khalsa, Nitin Chandel, Vinod Varghese, Hygrothermoelastic large deflection behaviour in a thin circular plate with non-Fourier and non-Fick law , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper

