Three-phase-lags thermoelastic infinite medium model with a spherical cavity via memory-dependent derivatives

Nitin Chandel1*, Lalsingh Khalsa1, Sunil Prayagi2, Vinod Varghese1

Abstract

The present study examines the impact of a three-phase lags thermoelastic infinite medium with a spherical cavity subjected to thermal shock in the temperature of its internal boundary. In this study, a new time-fractional three-phase-lag thermoelasticity model with memory-dependent derivatives is utilized. From the suggested model, we recover certain previous thermoelasticity models as special instances. Laplace transform techniques are used. The solution to the problem in the transformed domain is obtained by using the Gaver-Stehfest algorithm. The validity of the proposed theory is evaluated through a comparison with the existing literature. The numerical computations are conducted and represented graphically. The numerical values of field variables show significant differences for a specific material, highlighting important points related to the prediction of the new model. The article's physical viewpoints could be helpful in the development of novel materials.

Keywords: Thermoelastic; three-phase-lags; memory-dependent derivative; fractional calculus; spherical cavity; non-simple.

Introduction

The classical uncoupled thermoelasticity model has two issues that do not align with observed physical phenomena: the equilibrium state of heat conduction does not impose constraints on elastic terms, and the heat conduction equation produces an unlimited speed of propagation for thermal waves.

Biot (1956) formulated the theory of coupled thermoelasticity (CTE), which integrates governing equations and resolves the initial dilemma of the classical theory. However, the second paradox, with the coupled theory's heat conduction equation being a parabolic type, was still as is. Lord and Shulman (1967) formulated a novel law of heat conduction, which is classified as hyperbolic and predicts finite propagation speeds for both thermal and mechanical waves. Miller (1971) proposed a limit on a class of constitutive equations, imposing an entropy inequality. Green and Laws (1972), Green and Lindsay (1972), and Suhubi (1975) expanded upon this imbalance. Youssef (2005); Youssef (2005) successfully addressed challenges about generalized thermo-elasticity for an infinite material with a spherical cavity. Tzou (2014) introduced a dual-phase-lag (DPL) model to study microstructural interactions within solid heat conductors at a microscopic scale, incorporating delay time translation of heat flux vector and temperature gradient. Youssef (2016) successfully solved the initial mathematical model of thermoelasticity with fractional order strain for a homogeneous isotropic one-dimensional thermoelastic half-space, utilizing various thermo-elasticity models.

The present study presents a theoretical framework based on a two-temperature, three-phase lag (TPL) thermoelastic model to elucidate the influence of heat propagation within an infinite medium featuring a spherical cavity. To tackle the challenge of infinite speed propagation, the Fourier model has been modified through the incorporation of a specific time constant, referred to as the phase lag of the heat flux, temperature gradient, and displacement gradient. The closed-form solutions of temperature distribution components across the proposed model are derived using the integral transform approach. The Gaver-Stehfest procedure is employed to derive the numerical Laplace inversion.
Mathematical modeling

Notations

\(q \) heat conduction vector
\(b \) discrepancy factor
\(T \) thermodynamic temperature
\(u \) displacement
\(\Phi \) conductive temperature
\(H(t) \) Heaviside function
\(k \) thermal conductivity
\(\Gamma \) Gamma function
\(Q \) Internal heat source
\(\rho \) density
\(\epsilon \) dilatation
\(s \) Laplace parameter
\(\epsilon_{ij} \) strain components
\(\delta_{ij} \) Kronecker's delta
\(C_e \) specific heat
\(\tau_l \) phase lags \((l = T, q, a)\)
\(\lambda, \mu \) Lame's constants

Modified governing equation

Green and Naghdi (1992) proposed a heat conduction law

\[
\dot{q}(P, t + \tau_q) = -k \nabla T(P, t + \tau_T)
\]

(1)

Green and Naghdi (1993) further modeled a heat conduction law

\[
\dot{q}(P, t + \tau_q) = -k \nabla T(P, t + \tau_T) - k^* \nabla u(P, t + \tau_u)
\]

(2)

where \(\dot{c}_u / \dot{c}_t = T \) and \(k^*(\geq 0) \) is a material constant characteristic of the theory.

Chen and Gurtin (1968) proposed two-temperature concepts as

\[
\Phi = [1 - b(\partial / \partial t)] T, \quad b > 0; \quad \nabla^2 = \partial / \partial t
\]

(3)

Thus, a non-simple non-Fourier law can be proposed using Eqs. (2) and (3)

\[
\dot{q}(P, t + \tau_q) = -k \nabla T(P, t + \tau_T) - k^* \nabla u(P, t + \tau_u)
\]

(4)

The TPL model by Roy Choudhuri in a modified form:

\[
\dot{q}(P, t + \tau_q) = -k \nabla T(P, t + \tau_T) - k^* \nabla u(P, t + \tau_u)
\]

(5)

and then Eq. (5) was taken with Taylor's expansion as proposed by Jumarie (2010)

\[
\dot{q} + \tau_q \frac{\partial \dot{q}}{\partial t} = -\left(\tau^*_u + k \tau_T \frac{\partial}{\partial t} \right) \nabla T - k^* \nabla u
\]

(6)

The second order in Taylor's expansion, as expressed in Eq. (2), one obtains

\[
\left(1 + \tau_q \frac{\partial}{\partial t} - \frac{1}{2} \tau^*_u \frac{\partial^2}{\partial t^2} \right) \dot{q} = -k \left(1 + b \frac{\partial}{\partial t} + \frac{\partial}{\partial t} \right) \nabla T - k^* \nabla u
\]

(7)

where \(\tau^*_u = k \tau_T \tau_q \) and \(0 \leq \tau_u \leq \tau_T \leq \tau_q \).

The rise in entropy \(S \) leads to the energy equation taken by Biot (1956) as

\[
\rho C_e \frac{\partial T}{\partial t} + \gamma T_0 \frac{\partial^2 (e^{T}u)}{\partial t^2} = -\dot{Q} q + Q
\]

(8)

Taking divergence on both sides of Eq. (8), and using Eq. (9), and differentiating both equations with respect to time, one obtains

\[
\left(1 + \tau_q \frac{\partial}{\partial t} - \frac{1}{2} \tau^*_u \frac{\partial^2}{\partial t^2} \right) \rho C_e \frac{\partial^2 T}{\partial t^2} + \gamma T_0 \frac{\partial^2 (e^{T}u)}{\partial t^2} = \left(1 + \tau_q \frac{\partial}{\partial t} + \frac{\partial}{\partial t} \right) \rho C_e \frac{\partial T}{\partial t} + \gamma T_0 \frac{\partial (e^{T}u)}{\partial t}
\]

(9)

Caputo's fractional-order-derivative can be expressed as Caputo and Mainardi (1971).

\[
D_c^\alpha Y(t) = \int_0^t \frac{(t-\tau)^{\alpha-1}}{\Gamma(\alpha)} D^\alpha Y(\tau) d\tau, \quad a - 1 \leq a \leq n
\]

(10)

where the operator \(D^\alpha \) denotes \(n \) -th derivative operation.

Dietz and Li (1991) introduced a kernel in the integrand form to enhance the fractional derivative of the Caputo type as follows:

\[
D_c^\alpha Y(t) = \frac{1}{t^\alpha} \int_0^t K_a(t-\xi) Y(\xi) d\xi
\]

(11)

The order derivative, denoted by \(Y^{(m)} \), is the kernel function with the following form:

\[
K_a(t-\xi) = \frac{(t-\xi)^{m-a-1}}{\Gamma(n-a)}
\]

(12)

Wang and Li (2011) defined the MDD, introducing the “memory-dependent derivative” to illustrate memory influence. They applied an integral definition of a first-order common derivative of MDD for functions over a sliding interval.

\[
D_c^\alpha Y(t) = \frac{1}{t^\alpha} \int_0^t K_a(t-\xi) Y(\xi) d\xi
\]

(13)

In a particular instance where the kernel \(K_a = 1 \), we find that

\[
D_c^\alpha Y(t) = \frac{1}{t^\alpha} \int_0^t Y(\xi) d\xi = \frac{\tau^{\alpha} Y(t) - Y(0)}{\tau^\alpha
\}
\]

(14)

If \(Y(t) \) and kernel \(K_a(t-\xi) \) are differentiable \(m \) times around \(t \) and \(\xi \), where \(m \in \mathbb{Z} \) and \(\mathbb{R} \) are natural numbers, then

\[
D_c^\alpha Y(t) = \frac{1}{t^\alpha} \int_0^t Y^{(m)}(\xi) d\xi
\]

(15)

The equation through the relation between MDD of first and second-order as

\[
D^2_c Y(t) = D_c^\alpha Y(t) = \frac{d}{dt} [D_c^\alpha f(t)]
\]

(16)

The \(m \) order MDD moreover fulfills the subsequent relation for any \(m \in \mathbb{Z} \)

\[
D^m_c Y(t) = D^{n-1}D^\alpha Y(t) = \frac{d^{m-n}}{dt^{m-n}} [D^\alpha Y(t)]
\]

(17)

The MDD equations are practical and can be expressed as a recognized derivative of order, making them useful for real-world problems, as explained in Eq. (12) as

\[
D^\alpha_T q_T + \tau_T \frac{\partial}{\partial t} + \frac{1}{2} \tau^*_u \frac{\partial^2}{\partial t^2} \left(\rho C_e \frac{\partial^2 T}{\partial t^2} + \gamma T_0 \frac{\partial^2 (e^{T}u)}{\partial t^2} \right) = \frac{1}{t^\alpha} \int_0^t \left(1 + \tau_q \frac{\partial}{\partial t} + \frac{\partial}{\partial t} \right) \rho C_e \frac{\partial T}{\partial t} + \gamma T_0 \frac{\partial (e^{T}u)}{\partial t}
\]

(18)
Here, Eq. (18) with \(b \neq 0 \), \(T = \Phi \) is reduced to different theories of thermoelasticity:

- Roy Choudhuri (2007) TPL model: \(\tau_{y} \neq 0, \tau_{y} \neq 0, \tau_{s} = 0 \)
- Tzou (2014) DPL model: \(\tau_{y} = 0, \tau_{y} = 0, \tau_{s} = 0, \tau_{s} > 0, k^* = 0 \)
- Green and Naghdi (1993) GN-III model: \(\tau_{y} = 0, \tau_{y} = 0, \tau_{s} = 0 \)
- Lord and Shulman (1967) LS model: \(\tau_{y}^{2} = \tau_{y} = 0, \tau_{s} > 0, k^* = 0 \)
- Biot (1956) CTE model: \(\tau_{y}^{2} = \tau_{y} = 0, \tau_{s} = 0, k^* = 0 \)

Eq. (18) with \(b \neq 0 \), \(T \neq \Phi \) is reduced to thermoelasticity theory as given below:

- Mukhopadhyay et al. (2011) (MTE) model: \(\tau_{y}^{2} = \tau_{y} = 0, \tau_{s} = 0 \)
- Youssef (2006) (YTE) model: \(\tau_{y}^{2} = \tau_{y} = 0, \tau_{s} = 0 \)

Statement of Problem

Let us consider an infinite isotropic medium with a spherical cavity and no external body forces. It is assumed that the spherical cavity occupies the space \(D \subset \mathbb{R}^{3} \) defined by \(D = \{ (r, \theta, \phi) \in \mathbb{R}^{3} | 0 < r \leq a, 0 < \theta < 2\pi, 0 < \phi \leq \pi \} \). The center of the cavity is taken to be the origin of the spherical polar system \((r, \theta, \phi)\), as shown in Figure 1.

Governing equation of thermoelasticity

The governing equations for motion in the absence of body forces

\[
\frac{\partial \sigma_{rr}}{\partial r} + 2\frac{\sigma_{rr} - \sigma_{\theta\theta}}{r} = \rho \frac{\partial^{2} u}{\partial t^{2}} \]

(19)

The non-zero strain components in terms of displacement are

\[
e_{rr} = \frac{\partial u}{\partial r}, e_{\theta\theta} = \frac{\partial (\rho \omega)}{\partial \theta}, e_{\phi\phi} = e_{rr} \]

(20)

Then, the stress components are obtained as

\[
\sigma_{rr} = \lambda \epsilon_{rr} + 2\mu \epsilon_{rr} - \sigma_{\theta\theta} (3\lambda + 2\mu) T \]

(21)

\[
\sigma_{\theta\theta} = \lambda \epsilon_{rr} + 2\mu \epsilon_{rr} - \sigma_{rr} (3\lambda + 2\mu) T \]

(22)

From Eqs. (19)-(22), the equation of motion without external body forces is given by

\[
(\lambda + 2\mu) \left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{u}{r^2} \right) + \frac{\rho c^2}{r^2} \frac{\partial^2 u}{\partial t^2} = 0 \]

(23)

Dimensionless parameter

Let us now present the following non-dimensional variable for convenience:

\[
\tilde{r}(\tilde{r}) = c \rho \tilde{r}(r, \theta, \phi), (\tilde{r}, \tilde{r}, \tilde{r}, \tilde{\theta}, \tilde{\phi}) = c \rho \tilde{r}(\tilde{r}, \tilde{\theta}, \tilde{\phi}), \]

\[
\tilde{t} = \frac{\rho \tilde{t}}{\lambda + 2\mu}, \tilde{\sigma}_{rr} = \frac{\sigma_{\sigma_{rr}}}{\lambda + 2\mu}, \tilde{\sigma}_{\theta\theta} = \frac{\sigma_{\sigma_{\theta\theta}}}{\lambda + 2\mu} \]

(24)

The form of Eqs. (18), (19)-(23) are reduced by using Eq. (24) as a non-dimensional quantity and dropping the overhat prime for further calculation

\[
D_{rr}^{\infty} + \tau_{y} D_{rr}^{\infty} + \frac{1}{2} \frac{c^2}{c^2} D_{\theta\theta}^{\infty} \left(\rho C_{v} + \frac{\rho C_{v}^2}{c^2} + \rho C_{v} \frac{\rho C_{v}^2}{c^2} + \rho C_{v} \frac{\rho C_{v}^2}{c^2} \right) \]

(25)

\[
= \frac{\sigma_{\sigma_{rr}}}{\lambda + 2\mu} \left(\frac{c^2}{c^2} + \frac{c^2}{c^2} \right) \frac{\rho C_{v}}{\lambda + 2\mu} \frac{\rho C_{v}^2}{c^2} \frac{\rho C_{v}^2}{c^2} \]

Solution of the problem

The Laplace transform is defined by

\[
\tilde{f}(r, \tilde{s}) = \mathcal{L} \{ f(r, t) \} = \int_{0}^{\infty} e^{-t \tilde{s}} f(r, t) dt \]

(36)

By utilizing the convolution theorem, it becomes possible to employ the Laplace transform to the higher-order memory-derivative \(D_{rr}^{\infty} \), satisfying the property

\[
\mathcal{L} \{ \tilde{f}(r, t) \} = \mathcal{L} \{ \int_{-\infty}^{\infty} K(t - \xi) \tilde{f}(r, \xi) d\xi \} = s^{\infty} \mathcal{L} \{ f(r, t) \} \]

(37)
and we define the kernel function as

\[K(\tau - \xi) = \begin{cases} \frac{2f}{\tau} (\xi - \tau) + \frac{c^2}{\tau} (\xi - \tau)^2, & \text{if } e = f = 0, p = 0 \\ \frac{1}{\tau}, & \text{if } e = 0, f = \frac{1}{2}, p = 0 \\ \frac{1}{\tau} (\xi - \tau)^2, & \text{if } e = 1, f = 1, p = 1 \end{cases} \]

(38)

where \(\tau \) is the delay time, \(e \) and \(f \) are constants, and \(p \in \mathbb{R} \), respectively.

Taking Laplace Transform as written by Debnath and Bhatta (2006) on Eqs. (25) and (28)- (33), one get

\[(\mathcal{V}^2 - \mathcal{L}^2)\mathcal{F} = \mathcal{F} \left(\mathcal{T}_0 s \mathcal{T} - \mathcal{O} \right) \]

(39)

\[\mathbf{G}(s, \tau) = (1 - \mathbf{G}(\tau) \mathbf{G}(\tau)) \mathcal{G}(s, \tau) + \mathbf{k}^s, \]

(40)

\[\mathcal{G}(s, \tau) = (1 - e^{-\tau s}) \left[1 - \frac{2s^2}{s^2 + \tau^2} \right] - (e^{-2s^2} + \frac{2s^2}{s^2 + \tau^2}) e^{-\tau s}, \]

(41)

Now \(\mathcal{F} \) eliminating from Eqs. (39) and (40), one gets

\[(\mathcal{V}^4 - \mathcal{A}_1 \mathcal{V}^2 + \mathcal{A}_2)\mathcal{F} = \mathcal{G}(l_1 \mathcal{V} - \mathcal{V}^2) \mathcal{O} \]

(42)

where \[\mathbf{A}_1 = \mathbf{A}_2 + \mathbf{b} \mathcal{T}_0 \mathbf{A}_2 + \mathbf{A}_2 \mathbf{A}_2 = \mathbf{A}_2 \mathbf{A}_2 = \frac{s^2}{\mathbf{i}^2} \]

(43)

Since \(\mathbf{A}_1 \) and \(\mathbf{A}_2 \) are real positive numbers, then Eq. (42) becomes

\[(\mathcal{V}^4 - \mathcal{m}_1^2 \mathcal{V}^2 + \mathcal{m}_2^2)\mathcal{F} = \mathcal{G}(l_1 \mathcal{V} - \mathcal{V}^2) \mathcal{O} \]

(44)

where \(\mathcal{m}_1^2 \) and \(\mathcal{m}_2^2 \) are the roots of the characteristics equation

\[m^4 - 4m^2 + \mathbf{A}_2 = 0 \]

(45)

Henceforth, we consider internal heat sources as \(Q(r, t) = q_g H(t) \varphi(r) / r \)

(46)

Therefore Eq. (44) become

\[(\mathcal{V}^4 - \mathcal{m}_1^2 \mathcal{V}^2 + \mathcal{m}_2^2)\mathcal{F} = \frac{q_g l}{s} (l_1 \mathcal{V} - \mathcal{V}^2) \mathcal{O} \]

(47)

Use the Hankel transformation

\[H_{lq}[\mathcal{F}(r, s)] = \int_0^\infty \mathcal{F}(\xi, s) \int_0^{2\pi} \mathcal{O}(\eta) \xi l_{\mathcal{d}} d\eta d\xi dr \]

(48)

and inversion of Hankel transformation is

\[\mathcal{F}(r, s) = \frac{1}{2\pi} \int_0^{2\pi} \mathcal{F}(\xi, s) \xi l_{\mathcal{d}} d\eta d\xi dr, \]

(49)

where \(J_0(\xi) \) is the Bessel function of the first kind of order 0, and \(\varphi(\xi) = 0. \)

The Hankel transformation on Eq. (49) has been applied, resulting as

\[(\mathcal{V}^4 - \mathcal{m}_1^2 \mathcal{V}^2 + \mathcal{m}_2^2)\mathcal{F} = \frac{q_g l}{s}, \]

(50)

(51)

Therefore the solution of the function \(\mathcal{F}(r, s) \) in Laplace domain is

\[\mathcal{F}(r, s) = \frac{q_g l}{s(m_1^2 - m_2^2)} \left[K_0(q_1 r) - K_0(q_2 r) \right] \]

(52)

where \(K_0(q_1 r), i = 1, 2 \) is the second kind of modified Bessel function of zero order, and we have

\[(d/d\tau)K_0(q_1 r) = -q_1 K_1(q_1 r) \text{ and } \mathcal{V}^2 K_0(q_1 r) = m_1^2 K_0(q_1 r). \]

Substituting equation (53) into \(u = \partial \mathcal{F} / \partial r \), one obtains

\[u = \frac{q_g l}{rs(m_1^2 - m_2^2)} \left[m_1 K_1(q_1 r) - m_2 K_1(q_2 r) \right] \]

(53)

(54)

where \(K_1(q_1 r), i = 1, 2 \) is the second kind of modified Bessel function of one order.

The cubic dilation \(e \) can be obtained using Eq. (54) as

\[e = \frac{q_g l}{rs(m_1^2 - m_2^2)} \left[m_1 (K_1(q_1 r) - K_0(q_1 r)) + m_2 (K_0(q_2 r) - K_1(q_2 r)) \right] \]

(55)

Substituting Equations (53)-(55) in Equations (41)-(42), one obtains

\[\mathbf{A}_1 = \mathbf{A}_2 + \mathbf{b} \mathcal{T}_0 \mathbf{A}_2 + \mathbf{A}_2 \mathbf{A}_2 = \mathbf{A}_2 \mathbf{A}_2 = \frac{s^2}{\mathbf{i}^2} \]

(56)

\[\mathbf{A}_m \mu \]

(57)

The Gaver-Stehfest algorithm as proposed by Stehfest (1970) is used to solve a problem in the Laplace transform domain, obtaining conductive temperature increment, dynamical temperature increment, displacement, and stress distributions in the time domain

\[f(t) = f_a(t) = \frac{\ln(2)}{t} \sum_{n=1}^{m} (-1)^n \frac{L/2}{n^{L/2}} \sum_{k=1}^{L/2} a_n^k \left[\left(\frac{1}{2k} \right) \left(\frac{1}{2k} \right) \right] \]

(58)

where \(F[.] \) is the Laplace transform of \(f(t), n \geq 1, t > 0, 1 \leq L \leq n \).

Numerical results and their discussion in the time domain

The numerical illustration illustrates the use of hypothetical copper-like as a thermoelastic material to achieve the desired objective, considering various physical constant values Youssef (2005), for which \(k = 386 \text{ kg m}^{-1} \text{ s}^{-3}, \alpha_1 = 1.78 \times 10^{-3} \text{ k}^{-1}, p = 8954 \text{ kg m}^{-3}, T_0 = 293 \text{ K}, C_e = 383.1 \text{ m}^{-1} \text{ s}^{-2}, \lambda = 7.76 \times 10^9 \text{ kg m}^{-1} \text{ s}^{-2}, \mu = 3.86 \times 10^9 \text{ kg m}^{-1} \text{ s}^{-2}. \) In our numerical calculations, we take \(\tau_0 = 0.03 \text{ s}, \tau_3 = 0.03 \text{ s}, \tau_2 = 0.05 \text{ s}, \) \(k_0 = 7. \) It is well stated in the article of Mondal and Kanoria (2019), which aligns with the stability requirement stated in Quintanilla and Racke (2008); under three-phase lag heat conduction occurs, the solutions are always exponentially stable, if \(k < \tau_0^* < 2k \tau_0^*/\tau_0^* \).

Model Validation

The present model undergoes a comparison analysis with many models in order to evaluate its reliability, as illustrated in Figure 2. When the first kernel function of Eq. (38) is
1730
Nitin Chandel et al.
The Scientific Temper. Vol. 15, No. 1

assumed to be 1, it is possible to estimate the differential over time up to the limit of D_{τ}, as the hysteresis factor τ approaches zero.

According to theoretical considerations, it is projected that when the hysteresis factor is low, the MDD will undergo a transition into a triple/dual-phase hysteresis model. The model we have proposed, which incorporates complex differential partial equations, can be simplified to a parabolic model when uniform initial conditions $\theta = \Phi$ are applied.

In this simplified model, the temperature discrepancy factor $b = 0$, $k^* = 0$ and considering two temperatures as $\Theta = \Phi$ in Eqs. (25), are considered. This simplifies the model to the coupled classical thermoelasticity (CTE) model. In the present context, when η is set to zero, the model transforms a coupled hyperbolic model to an uncoupled hyperbolic model. When $\varepsilon^* = 0$ is taken into account, the current model will shift from a coupled hyperbolic model to an uncoupled one. Based on Xu and Wang (2018), the heat propagation velocity can be determined as

$$V = \sqrt{D_{\tau}} \left(\frac{1}{2} D_{\tau}^2 + (\frac{1}{2}) \varepsilon_{\eta}^2 \right)^{1/2}$$

using Eq. (25). Given that the kernel function in Eq. (38) is equal to 1, the result obtained by taking $\varepsilon_{\eta} = 0.04$ and $\varepsilon^* = 0.0016$ is $V = (50)^{1/2}$. The dimensionless propagation distance, denoted as $\Delta x = 0.35$ (here $t = 0.05$), exhibits a strong concurrence with the numerical forecast, as depicted in Figure 2. The integral across a region represents the heat absorbed from an external heat source. In contrast, the temperature distributions of distinct models show distinct heat transfer mechanisms occurring at a particular moment. The figure clearly illustrates that all models exhibit distinct variations in values in close proximity to surface boundaries, and this variation diminishes as the distance and sectional heat supply increase. The temperature profile reaches its peak values in close proximity to the inner curved surface and subsequently diminishes until it reaches zero.

Effect of kernel function response along the radius

The RED line refers to the kernel function $\kappa(t - \xi) = 1$; the BLUE line refers to the kernel function $\kappa(t - \xi) = 1 - (t - \xi)/\tau$, and the PURPLE line for the kernel function $\kappa(t - \xi) = (1 - (t - \xi)/\tau)^2$. The temperature distribution exhibits an initial high value at the onset of the curved spherical cavity due to the presence of sectional thermal shock, followed by a progressive stabilization as the parameter r approaches infinity, as depicted in Figure 3. The findings of the study indicate a direct proportion to positive phase-lag difference and kernel function values, with the coupled scenario exhibiting higher temperatures than the uncoupled scenario.

Figure 4 shows trends in displacement curves, with initial values, acting with high compressed force due to sectional heat flux accumulation. The uncoupled case also showed a high-magnitude displacement trend as it tends to infinity. According to Figure 5, the radial stress exhibits a monotonically decreasing trend and recovers in the later stage along the radial direction as the kernels vary. Starting from zero values, it reaches the deep trough and gradually increases till it approaches zero. The fall in stress during the first phases and later stages can be attributed to an increase in the rate of heat propagation. This decrease in stress is primarily driven by the compressive force and later taken over by tensile force, which gradually approaches zero as its radius approaches infinity. Figure 6 illustrates that the compressive force significantly reduces the tangential stress.
Three-phase-lags thermoelastic infinite medium model via memory-dependent derivatives

at the start of the curved spherical cavity. As the radius approaches infinity, the strong tensile force steadily raises the tangential stress and eventually stabilizes it at zero.

Effect of temperature discrepancy factor on temperature profile

Figure 7 illustrates a graph showcasing the temperature distribution along r for the kernel $\kappa(t-\xi) = 1 - (t-\xi)/\tau_1$ at fixed time $t = 1.5$. The graph comprises a variety of data points that correspond to distinct values of the temperature discrepancy factor, denoted as b_i. When the value of $b = 0$, it indicates that the model mentioned above has been simplified to a theory that considers only one temperature. On the contrary, $b \neq 0$ signifies the existence of two temperature theories.

The homogeneous dispersion of thermal energy shows that the spherical cavity boundary exhibits the highest temperature. At the value of $b = 1.2$, the temperature graph displays a pronounced increase due to the conversion of heat energy into strain energy. The primary cause of this phenomenon is commonly ascribed to the element of high-temperature discrepancy. The observed outcome is consistent with what was reported in a prior publication by Zenkour and Abouelregal (2016).

Histories of thermal coupling over time

This section examines the correlation between temperature and time at various radial points, presenting a graphical representation of their changing patterns in Figure 8 for the kernel function $\kappa(t-\xi) = (1 - (t-\xi)/\tau_1)^2$. The temperature response distribution is influenced by heat wave propagation at the curved spherical cavity. It demonstrates a peak in the temperature curve, followed by a gradual decline until a stable state, attributed to heat shock. Variations in peak positions are due to damp-heat wavefront arrival times.

Conclusion

The study develops a comprehensive three-phase-lags thermoelastic infinite medium model with a spherical cavity via memory-dependent derivatives, examining heat flow under rapid temperature increase. The numerical results yield several inferences:

- ‘Memory-dependent derivatives’ non-Fourier effects significantly impact thermal field response history and distribution, with energy dissipation potentially causing temperature decrease without heat transfer.
- A revised categorization system for materials based on memory-dependent derivative parameters evaluates
heat conduction capacity, considering thermoelasticity at two temperatures via memory-dependent derivative.

- The phase-lag heat flux and temperature gradient significantly impact thermal field variables in memory-dependent derivatives time.

- The theories of CTE, Hyperbolic model, LS, GN-III, DPL, TPL, YTE, MTE are derived as specific instances and illustrated graphically; it shows a good agreement.

References

Appendix A

The kernel function

$$G(s, r_i) = \begin{cases} \frac{1- e^{-r_i}}{s r_i}, & \kappa(t-\xi) = 1 \\ \frac{1}{s r_i} - \frac{1- e^{-r_i}}{s r_i}, & \kappa(t-\xi) = 1 - \frac{t-\xi}{r_i} \\ \frac{2}{s r_i} - \frac{2(1- e^{-r_i})}{s^2 r_i^2}, & \kappa(t-\xi) = \left(1 - \frac{t-\xi}{r_i}\right)^2 \end{cases} \quad (A1)$$