Designing information systems for business administration through human and computer interaction
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.2.24Keywords:
Business administration, Human-computer interaction, Artificial intelligence, semantics, banking, customer serviceDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
AI is increasingly incorporated into business operations; it appears in every aspect of life. However, a strategy that can integrate human and machine interaction is required for long-term implementation. To identify characteristics that can enhance domain operations and interpersonal interactions. To elucidate these obstacles and underscore specific pivotal decisional considerations that necessitate resolution before the effective collaboration of cognitive machines and humans in delivering authentic financial services. This article utilizes the published framework to analyze a case study in retail banking to identify the necessary cognitive abilities, individually and collectively. Each of these capabilities provides usage examples and demonstrates how they comprise a unified deliberative architecture for human-robot interaction. Customer service is an area where this design could be advantageous. Experimental evidence indicates that explicit knowledge management at the geometric and symbolic levels facilitates the incorporation of human-level semantics into the deliberative system of the robot, thereby enhancing the quality and authenticity of human-robot interactions.Abstract
How to Cite
Downloads
Similar Articles
- Lakshminarayani A, A Shaik Abdul Khadir, A blockchain-integrated smart healthcare framework utilizing dynamic hunting leadership algorithm with deep learning-based disease detection and classification model , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Brijesh Singh, Ajay Massand, Determinants of Gen Z’s adoption of chatbots in online shopping: An empirical investigation , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Gautam Nayak, Parthivkumar Patel, Developing speaking skills through task-based learning in English as a foreign language classroom , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Amudavalli L, K. Muthuramalingam, Integrated energy-efficient routing and secure data management for location-aware wireless sensor networks with PFO leveraged improved fuzzy unequal clustering algorithm (IFUC) , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Ayesha Shakith, L. Arockiam, Enhancing classification accuracy on code-mixed and imbalanced data using an adaptive deep autoencoder and XGBoost , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Aruljothi Rajasekaran, Jemima Priyadarsini R., ECDS: Enhanced Cloud Data Security Technique to Protect Data Being Stored in Cloud Infrastructure , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Vijay Sharma, Nishu, Anshu Malhotra, An encryption and decryption of phonetic alphabets using signed graphs , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Kavitha V, Panneer Arokiaraj S., RPL-eSOA: Enhancing IoT network sustainability with RPL and enhanced sandpiper optimization algorithm , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Priya Nandhagopal, Jayasimman Lawrence, ETTG: Enhanced token and tag generation for authenticating users and deduplicating data stored in public cloud storage , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- V. Umadevi, S. Ranganathan, IoT based energy aware local approximated MapReduce fuzzy clustering for smart healthcare data transmission , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 10 11 12 13 14 15 16 17 18 19 > >>
You may also start an advanced similarity search for this article.