Designing information systems for business administration through human and computer interaction
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.2.24Keywords:
Business administration, Human-computer interaction, Artificial intelligence, semantics, banking, customer serviceDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
AI is increasingly incorporated into business operations; it appears in every aspect of life. However, a strategy that can integrate human and machine interaction is required for long-term implementation. To identify characteristics that can enhance domain operations and interpersonal interactions. To elucidate these obstacles and underscore specific pivotal decisional considerations that necessitate resolution before the effective collaboration of cognitive machines and humans in delivering authentic financial services. This article utilizes the published framework to analyze a case study in retail banking to identify the necessary cognitive abilities, individually and collectively. Each of these capabilities provides usage examples and demonstrates how they comprise a unified deliberative architecture for human-robot interaction. Customer service is an area where this design could be advantageous. Experimental evidence indicates that explicit knowledge management at the geometric and symbolic levels facilitates the incorporation of human-level semantics into the deliberative system of the robot, thereby enhancing the quality and authenticity of human-robot interactions.Abstract
How to Cite
Downloads
Similar Articles
- Deepika S, Jaisankar N, A novel approach to heart disease classification using echocardiogram videos with transfer learning architecture and MVCNN integration , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- Sachin V. Chaudhari, Jayamangala Sristi, R. Gopal, M. Amutha, V. Akshaya, Vijayalakshmi P, Optimizing biocompatible materials for personalized medical implants using reinforcement learning and Bayesian strategies , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Isaac Asampana, Henry M. Akwetey, Ben Ocra, Jones Y. Nyame, Albert A. Akanferi, Hannah A. Tanye, Factors motivating the adoption of virtual learning environments in higher education. Is gender relevant? , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- N. Sasirekha, R. Anitha, Vanathi T, Umarani Balakrishnan, Automatic liver tumor segmentation from CT images using random forest algorithm , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- Ashfaq Pathan, Ketan Desai, Direct selling laws and regulations in India: A comprehensive study , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Virendra Chavda, Bhavesh J. Parmar, Urvi Zalavadia, Assessment of Omni channel retailing characteristics and its effect on consumer buying intention , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
- Tara K. Sharma, Problems and prospects of tourism financing in Sikkim , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Sowmiya M, Banu Rekha B, Malar E, Ensemble classifiers with hybrid feature selection approach for diagnosis of coronary artery disease , The Scientific Temper: Vol. 14 No. 03 (2023): The Scientific Temper
- C. Mohan Raj, M. Sundaram , M. Anand, Automation of industrial machinerie , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- Mohiyuddeen Hafzal, Gayathri B.J., M. Meghana Shet, Shaping the future: Education and skill development for Viksit Bharat@2047 , The Scientific Temper: Vol. 15 No. spl-2 (2024): The Scientific Temper
<< < 8 9 10 11 12 13 14 15 16 17 > >>
You may also start an advanced similarity search for this article.