Ensuring ethical integrity and bias reduction in machine learning models
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.1.31Keywords:
Algorithmic performance, Bias mitigation, Demographic analysis, Ethical concerns, Task-specific challenges, Machine learning applications.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This research focused on the multifaceted realm of machine learning algorithms, focusing on the pivotal themes of ethical concerns and bias mitigation (Zeba G. et al., 2021). Employing a dual-pronged research methodology, the study first evaluates algorithmic performance across diverse tasks, such as audio transcription, content moderation, and system implementation. The research uses quantitative assessments and visual comparisons to highlight nuanced improvements in algorithmic efficiency and accuracy. The second dimension involves an in-depth analysis of demographic contributions in tasks like image categorization and content moderation. By scrutinizing the geographical distribution of contributors and demographics like age and gender, the study aims to unravel potential correlations between algorithmic effectiveness and contributor demographics. The graphical representations provide valuable visual insights, including bias distribution across categories, evolution over time, and baseline and improved performance comparisons. The findings contribute to the discourse on responsible AI development, emphasizing the need for tailored enhancements and inclusive participant recruitment strategies. Complemented by comprehensive results and discussions, this research methodology lays a robust foundation for addressing ethical concerns and advancing bias mitigation strategies in machine learning algorithms.Abstract
How to Cite
Downloads
Similar Articles
- Rajni Mathur, Bharti Singh, Anjali Kalse, Veena R. Kolte, Saloni Desai, Sameer Sonawane, Examining the impact of economic cycles on India’s information technology sector , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- J. M. Aslam, K. M. Kumar, Enhancing security of cloud using static IP techniques , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Neha R. Kshatriya, Preeti Nair, Social work students’ views on competencies in human resources , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Mahmudov E. Heydar, Aliyev S. Shakir, Abbasova S. Camal, Nadirkhanova D Adalat, Museyibli E Bakir, Huseynova G Shixi, The role of agricultural marketing in the formation of export potential in the post-conflict region of the Republic of Azerbaijan , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Bratati Dey, Poonam Sharma, A comprehensive review of urban growth studies and predictions using the Sleuth model , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Ravi Chaware, Sajid Anwar, Sunil Prayagi, Thermoelastic response of a finite thick annular disc with radiation-type conditions via time fractional-order effects , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Kakali Ghosh, Rajeshwar Mukherjee, Avasthātraya: Deeper insights , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Amanda Q. Okronipa, Jones Y. Nyame, Exploring the effect of perceived empathy and social presence on the intention to use AI in higher education , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- V. Manikandabalaji, R. Sivakumar, V. Maniraj, A novel approach using type-II fuzzy differential evolution is proposed for identifying and diagnosis of diabetes using semantic ontology , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- V. Manikandabalaji, R. Sivakumar, V. Maniraj, A framework for diabetes diagnosis based on type-2 fuzzy semantic ontology approach , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
<< < 39 40 41 42 43 44 45 46 47 48 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Purnendu B. Acharjee, Bhupaesh Ghai, Muniyandy Elangovan, S. Bhuvaneshwari, Ravi Rastogi, P. Rajkumar, Exploring AI-driven approaches to drug discovery and development , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Naveena Somasundaram, Vigneshkumar M, Sanjay R. Pawar, M. Amutha, Balu S, Priya V, AI-driven material design for tissue engineering a comprehensive approach integrating generative adversarial networks and high-throughput experimentation , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Arvind K Shukla, Balaji V, Dharani R, M Ananthi, R Padmavathy, Romala V. Srinivas, Precision agriculture predictive modeling and sensor analysis for enhanced crop monitoring , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- T. Kanimozhi, V. Rajeswari, R. Suguna, J. Nirmaladevi, P. Prema, B. Janani, R. Gomathi, RWHO: A hybrid of CNN architecture and optimization algorithm to predict basal cell carcinoma skin cancer in dermoscopic images , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper