Ensuring ethical integrity and bias reduction in machine learning models
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.1.31Keywords:
Algorithmic performance, Bias mitigation, Demographic analysis, Ethical concerns, Task-specific challenges, Machine learning applications.Dimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This research focused on the multifaceted realm of machine learning algorithms, focusing on the pivotal themes of ethical concerns and bias mitigation (Zeba G. et al., 2021). Employing a dual-pronged research methodology, the study first evaluates algorithmic performance across diverse tasks, such as audio transcription, content moderation, and system implementation. The research uses quantitative assessments and visual comparisons to highlight nuanced improvements in algorithmic efficiency and accuracy. The second dimension involves an in-depth analysis of demographic contributions in tasks like image categorization and content moderation. By scrutinizing the geographical distribution of contributors and demographics like age and gender, the study aims to unravel potential correlations between algorithmic effectiveness and contributor demographics. The graphical representations provide valuable visual insights, including bias distribution across categories, evolution over time, and baseline and improved performance comparisons. The findings contribute to the discourse on responsible AI development, emphasizing the need for tailored enhancements and inclusive participant recruitment strategies. Complemented by comprehensive results and discussions, this research methodology lays a robust foundation for addressing ethical concerns and advancing bias mitigation strategies in machine learning algorithms.Abstract
How to Cite
Downloads
Similar Articles
- M. Iniyan, A. Banumathi, Brower blowfish nash secured stochastic neural network based disease diagnosis for medical WBAN in cloud environment , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- P. John Robinson, P. Susai Alexander, Neural net influenced magdm problem with modified choquet integral aggregation operators and correlation coefficient for triangular fuzzy intuitionistic fuzzy sets , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Shiny Bridgette I, Rexlin Jeyakumari S, An optimal fuzzy inventory model for rice farming using lagrangean method , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Amalraj . P, Vinodkumar P. B., Existence of a homeomorphism from the space of continuous functions to the space of compact Subsets of a topological space, X , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Brij M. Sharma, Parul Singhal, Neeraj Uniyal, Ram T. Mourya, Jai Sharma, Community based seasonally water quality testing of tributaries of Dehradun , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Archana Verma, Application of metaverse technologies and artificial intelligence in smart cities , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Archana Verma, Role of artificial intelligence in evaluating autism spectrum disorder , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
- Ashfaq Pathan, Ketan Desai, Direct selling laws and regulations in India: A comprehensive study , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Rahat Yezdani, S. M. K. Quadri, A PPR-based energy-efficient VM consolidation in cloud computing , The Scientific Temper: Vol. 15 No. 03 (2024): The Scientific Temper
- Akanksha Singh, Nand Kumar, Analysis of renewable energy and economic growth of Germany , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper
<< < 40 41 42 43 44 45 46 47 48 49 > >>
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Purnendu B. Acharjee, Bhupaesh Ghai, Muniyandy Elangovan, S. Bhuvaneshwari, Ravi Rastogi, P. Rajkumar, Exploring AI-driven approaches to drug discovery and development , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- Naveena Somasundaram, Vigneshkumar M, Sanjay R. Pawar, M. Amutha, Balu S, Priya V, AI-driven material design for tissue engineering a comprehensive approach integrating generative adversarial networks and high-throughput experimentation , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Arvind K Shukla, Balaji V, Dharani R, M Ananthi, R Padmavathy, Romala V. Srinivas, Precision agriculture predictive modeling and sensor analysis for enhanced crop monitoring , The Scientific Temper: Vol. 14 No. 04 (2023): The Scientific Temper
- T. Kanimozhi, V. Rajeswari, R. Suguna, J. Nirmaladevi, P. Prema, B. Janani, R. Gomathi, RWHO: A hybrid of CNN architecture and optimization algorithm to predict basal cell carcinoma skin cancer in dermoscopic images , The Scientific Temper: Vol. 15 No. 02 (2024): The Scientific Temper