Hydroxyl-terminated triazine dendrimers mediated pH-dependent solubility enhancement of glipizide across dendritic generations: A comparative investigation
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.1.47Keywords:
Triazine dendrimer, Synthesis, Phase Solubility, Hydrophobic drug, GlipizideDimensions Badge
Issue
Section
License
Copyright (c) 2024 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
A huge challenge for the pharmaceutical industry is hydrophobic compounds, which affect aqueous solubility, an important measure of a medicine’s efficacy. Several approaches have been used; dendrimers are particularly noteworthy because of their long-term viability, nanoscale size, large payload capacity, and adaptable end functional groups. The unique architecture of dendrimers allows for modified medication delivery and solubility profiles, making them a powerful tool for improving the solubility of hydrophobic drugs. This marks the beginning of a new era in pharmaceutical formulations. A new era in drug formulations has begun with this. As part of this study, we synthesized third-generation hydroxyl-terminated triazine-based dendrimers by meticulously reducing chlorine groups following Michael’s addition. We intend to methodically examine the effects of various concentrations of these dendrimers on the solubility behavior of glipizide, a pharmaceutical agent with intrinsic hydrophobicity, across the first, second, and third generations (the full generation). A stimulating tale of solubility improvement emerged from our research. Glipizide’s solubility was positively correlated with the concentration and generational progression of the dendrimers. The solubility of hydrophobic drugs in water can be dramatically altered by dendrimers based on hydroxyl-terminated triazine. This field of study benefits from adding new dendrimers with each generation.Abstract
How to Cite
Downloads
Similar Articles
- Sachin V. Chaudhari, Jayamangala Sristi, R. Gopal, M. Amutha, V. Akshaya, Vijayalakshmi P, Optimizing biocompatible materials for personalized medical implants using reinforcement learning and Bayesian strategies , The Scientific Temper: Vol. 15 No. 01 (2024): The Scientific Temper
- Gulshan Makkad, Lalsingh Khalsa, Vinod Varghese, Fractional thermoviscoelastic damping response in a non-simple micro-beam via DPL and KG nonlocality effect , The Scientific Temper: Vol. 16 No. 04 (2025): The Scientific Temper
- V. Yamuna , P. Kandhavadivu, Recent developments in the synthesis of superabsorbent polymer from natural food sources: A review , The Scientific Temper: Vol. 14 No. 02 (2023): The Scientific Temper
- S. Sathiyavathi, V. Mathivannan, Selvi. Sabhanayakam, Cd4+ CELL COUNTS IN THE PATIENTS OF HIV INFECTED IN SALEM , The Scientific Temper: Vol. 1 No. 01 (2010): The Scientific Temper
- Anil Kumar, Aditya Kumar, Synthesis, spectral characterization and antimicrobial effect of Cu(II) complexes of schiff Base Ligand, N-(3,4- dimethoxybenzylidene)-3-aminopyridine (DMBAP) Derived from 3,4-dimethoxybenzaldehyde and 3-aminopyridine , The Scientific Temper: Vol. 14 No. 01 (2023): The Scientific Temper
- Rahul Maurya, Thirupataiah B, Lakshminarayana Misro, Thulasi R, Effect of the Solvent Polarity and Temperature in the Isolation of Pure Andrographolide from Andrographis paniculata , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
- M. Balamurugan, A. Bharathiraja, An enhanced hybrid GCNN-MHA-GRU approach for symptom-to-medicine recommendation by utilizing textual analysis of customer reviews , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- Shaik Rubeena Yasmin, Yashodhara Verma, Reena Lawrence, Biowaste-derived Nanoparticles and Their Preparation: A Review , The Scientific Temper: Vol. 12 No. 1&2 (2021): The Scientific Temper
- A. Sandanasamy, P. Joseph Charles, Distributed SDN control for IoT networks: A federated meta reinforcement learning solution for load balancing , The Scientific Temper: Vol. 16 No. 06 (2025): The Scientific Temper
- Jyoti Kataria, Himanshi Rawat, Himani Tomar, Naveen Gaurav, Arun Kumar, Azo Dyes Degradation Approaches and Challenges: An Overview , The Scientific Temper: Vol. 13 No. 02 (2022): The Scientific Temper
You may also start an advanced similarity search for this article.

