A general stochastic model to handle deduplication challenges using hidden Markov model in big data analytics
Downloads
Published
DOI:
https://doi.org/10.58414/SCIENTIFICTEMPER.2023.14.4.50Keywords:
Hidden markov model, Markov chain transition, Likelihood estimation, Poisson distribution.Dimensions Badge
Issue
Section
License
Copyright (c) 2023 The Scientific Temper

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Background: Since increased interest of consumers, cloud computing is needed to store and access the information about their data in their convenient way. In recent days, cloud computing offers many services stipulated by the internet. Data duplication is one of the main challenges in big data analytics that leads to increased data storage and processing time. Therefore, there is a need to develop a data deduplication process. It eliminates excessive copies of data as well as decreases the storage space. In order to preserve the accurate data information without any duplication, joint probability distribution computes the likelihood of two events occurring together at the same time and thus it leads to removing the redundant data before data is sent to the cloud server.Abstract
Methods: this paper presents a GSM algorithm that uses hidden markov model, likelihood estimation, markov chain transition, and poisson distribution model.
Findings: Joint probability distribution computes the likelihood of two events occurring together at the same time and thus it leads to removing the redundant data before data is sent to the cloud server.
Novelty and applications: This paper proposes the general stochastic model (GSM) to handle redundant data by a multi-level process using hidden markov model (HMM), likelihood estimation, transition probability and poisson distribution model (PDM).
How to Cite
Downloads
Similar Articles
- V. Karthikeyan, C. Jayanthi, Improving image quality assessment with enhanced denoising autoencoders and optimization methods , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Dharmendra Singh, Surabhi Singh, Identification of Microsatellite DNA for Population Genetic Analysis in Tor tor , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- Anita Yadav, Neerja Kapoor, Shivji Malviya, Sandeep K. Malhotra, COVID-19 Pandemic and the Global Vaccine Strategy , The Scientific Temper: Vol. 11 No. 1&2 (2020): The Scientific Temper
- B. S. E. Zoraida, J. Jasmine Christina Magdalene, Smart grid precision: Evaluating machine learning models for forecasting of energy consumption from a smart grid , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- M. A. Shanti, Optimizing predictive accuracy: A comparative study of feature selection strategies in the healthcare domain , The Scientific Temper: Vol. 15 No. spl-1 (2024): The Scientific Temper
- Santima Uchukanokkul, Bijal Zaveri, Impact of emerging global educational trends on overseas education programs for aspiring students in South East Asia and South Asia: A decadal analysis , The Scientific Temper: Vol. 15 No. 04 (2024): The Scientific Temper
- AMITESH KUMAR, R.K. VERMA, STUDY OF BARDEEN COOPER STATE (BCS) TO BOSE EINSTEIN CONDENSATION (BEC) CROSSOVER , The Scientific Temper: Vol. 10 No. 1&2 (2019): The Scientific Temper
- AMITESH KUMAR, R.K. VERMA, AN EVALUATION OF SUPER-FLUID DENSITY s AS A FUNCTION OF c T T FOR BCS-BEC CROSSOVER REGIME , The Scientific Temper: Vol. 10 No. 1&2 (2019): The Scientific Temper
- RUCHI SHARMA, YOUGESH KUMAR, STATISTICAL ANALYSIS OF MONOGENEAN POPULATIONS INFESTING FRESH WATER FISH CHANNA PUNCTATUS , The Scientific Temper: Vol. 10 No. 1&2 (2019): The Scientific Temper
- Suman Saurabh, Prashant Kumar, CLIMATE CHANGE EFFECTS ON AQUATIC ECOSYSTEM: STRUCTURE AND DISEASE , The Scientific Temper: Vol. 9 No. 1&2 (2018): The Scientific Temper
<< < 10 11 12 13 14 15 16 17 18 19 > >>
You may also start an advanced similarity search for this article.